Category: star

image

In August 2018, our Parker Solar Probe mission launched to space, soon becoming the closest-ever spacecraft from the Sun. Now, scientists have announced their first discoveries from this exploration of our star!

The Sun may look calm to us here on Earth, but it’s an active star, unleashing powerful bursts of light, deluges of particles moving near the speed of light and billion-ton clouds of magnetized material. All of this activity can affect our technology here on Earth and in space.

Parker Solar Probe’s main science goals are to understand the physics that drive this activity — and its up-close look has given us a brand-new perspective. Here are a few highlights from what we’ve learned so far.

1. Surprising events in the solar wind

The Sun releases a continual outflow of magnetized material called the solar wind, which shapes space weather near Earth. Observed near Earth, the solar wind is a relatively uniform flow of plasma, with occasional turbulent tumbles. Closer to the solar wind’s source, Parker Solar Probe saw a much different picture: a complicated, active system. 

One type of event in particular drew the eye of the science teams: flips in the direction of the magnetic field, which flows out from the Sun, embedded in the solar wind. These reversals — dubbed “switchbacks” — last anywhere from a few seconds to several minutes as they flow over Parker Solar Probe. During a switchback, the magnetic field whips back on itself until it is pointed almost directly back at the Sun.

image

The exact source of the switchbacks isn’t yet understood, but Parker Solar Probe’s measurements have allowed scientists to narrow down the possibilities — and observations from the mission’s 21 remaining solar flybys should help scientists better understand these events. 

2. Seeing tiny particle events

The Sun can accelerate tiny electrons and ions into storms of energetic particles that rocket through the solar system at nearly the speed of light. These particles carry a lot of energy, so they can damage spacecraft electronics and even endanger astronauts, especially those in deep space, outside the protection of Earth’s magnetic field — and the short warning time for such particles makes them difficult to avoid.

image

Energetic particles from the Sun impact a detector on ESA & NASA’s SOHO satellite.

Parker Solar Probe’s energetic particle instruments have measured several never-before-seen events so small that all trace of them is lost before they reach Earth. These instruments have also measured a rare type of particle burst with a particularly high number of heavier elements — suggesting that both types of events may be more common than scientists previously thought.

3. Rotation of the solar wind

Near Earth, we see the solar wind flowing almost straight out from the Sun in all directions. But the Sun rotates as it releases the solar wind, and before it breaks free, the wind spins along in sync with the Sun’s surface. For the first time, Parker was able to observe the solar wind while it was still rotating – starting more than 20 million miles from the Sun.

image

The strength of the circulation was stronger than many scientists had predicted, but it also transitioned more quickly than predicted to an outward flow, which helps mask the effects of that fast rotation from the vantage point where we usually see them from, near Earth, about 93 million miles away. Understanding this transition point in the solar wind is key to helping us understand how the Sun sheds energy, with implications for the lifecycles of stars and the formation of protoplanetary disks.

4. Hints of a dust-free zone

Parker also saw the first direct evidence of dust starting to thin out near the Sun – an effect that has been theorized for nearly a century, but has been impossible to measure until now. Space is awash in dust, the cosmic crumbs of collisions that formed planets, asteroids, comets and other celestial bodies billions of years ago. Scientists have long suspected that, close to the Sun, this dust would be heated to high temperatures by powerful sunlight, turning it into a gas and creating a dust-free region around the Sun.

image

For the first time, Parker’s imagers saw the cosmic dust begin to thin out a little over 7 million miles from the Sun. This decrease in dust continues steadily to the current limits of Parker Solar Probe’s instruments, measurements at a little over 4 million miles from the Sun. At that rate of thinning, scientists expect to see a truly dust-free zone starting a little more than 2-3 million miles from the Sun — meaning the spacecraft could observe the dust-free zone as early as 2020, when its sixth flyby of the Sun will carry it closer to our star than ever before.

These are just a few of Parker Solar Probe’s first discoveries, and there’s plenty more science to come throughout the mission! For the latest on our Sun, follow @NASASun on Twitter and NASA Sun Science on Facebook.

image

Are you throwing all your money into a black hole today?

Forget Black Friday — celebrate #BlackHoleFriday with us and get sucked into this recent discovery of a black hole that may have sparked star births across multiple galaxies.

If confirmed, this discovery would represent the widest reach ever seen for a black hole acting as a stellar kick-starter — enhancing star formation more than one million light-years away. (One light year is equal to 6 trillion miles.)

A black hole is an extremely dense object from which no light can escape. The black hole’s immense gravity pulls in surrounding gas and dust. Sometimes, black holes hinder star birth. Sometimes — like perhaps in this case — they increase star birth.

Telescopes like our Chandra X-ray Observatory help us detect the X-rays produced by hot gas swirling around the black hole. Have more questions about black holes? Click here to learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Say hello to the Saturn Nebula 👋

Garden-variety stars like the Sun live fairly placid lives in their galactic neighborhoods, casually churning out heat and light for billions of years. When these stars reach retirement age, however, they transform into unique and often psychedelic works of art. This Hubble Space Telescope image of the Saturn Nebula shows the result, called a planetary nebula. While it looks like a piece of wrapped cosmic candy, what we see is actually the outer layers of a dying star.

Stars are powered by nuclear fusion, but each one comes with a limited supply of fuel. When a medium-mass star exhausts its nuclear fuel, it will swell up and shrug off its outer layers until only a small, hot core remains. The leftover core, called a white dwarf, is a lot like a hot coal that glows after a barbecue — eventually it will fade out. Until then, the gaseous debris fluoresces as it expands out into the cosmos, possibly destined to be recycled into later generations of stars and planets.

Using Hubble’s observations, scientists have characterized the nebula’s composition, structure, temperature and the way it interacts with surrounding material. Studying planetary nebulas is particularly interesting since our Sun will experience a similar fate around five billion years down the road.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

For 10 years, our Fermi Gamma-ray Space Telescope has scanned the sky for gamma-ray bursts (GRBs), the universe’s most luminous explosions!

image

Most GRBs occur when some types of massive stars run out of fuel and collapse to create new black holes. Others happen when two neutron stars, superdense remnants of stellar explosions, merge. Both kinds of cataclysmic events create jets of particles that move near the speed of light.

A new catalog of the highest-energy blasts provides scientists with fresh insights into how they work. Below are five record-setting events from the catalog that have helped scientists learn more about GRBs:

1. Super-short burst in Boötes!

image

The short burst 081102B, which occurred in the constellation Boötes on Nov. 2, 2008, is the briefest LAT-detected GRB, lasting just one-tenth of a second!

2. Long-lived burst!

image

Long-lived burst 160623A, spotted on June 23, 2016, in the constellation Cygnus, kept shining for almost 10 hours at LAT energies — the longest burst in the catalog.

For both long and short bursts, the high-energy gamma-ray emission lasts longer than the low-energy emission and happens later.

3. Highest energy gamma-rays!

image

The highest-energy individual gamma ray detected by Fermi’s LAT reached 94 billion electron volts (GeV) and traveled 3.8 billion light-years from the constellation Leo. It was emitted by 130427A, which also holds the record for the most gamma rays — 17 — with energies above 10 GeV.

4. In a constellation far, far away!

image

The farthest known GRB occurred 12.2 billion light-years away in the constellation Carina. Called 080916C, researchers calculate the explosion contained the power of 9,000 supernovae.

5. Probing the physics of our cosmos!

image

The known distance to 090510 helped test Einstein’s theory that the fabric of space-time is smooth and continuous. Fermi detected both a high-energy and a low-energy gamma ray at nearly the same instant. Having traveled the same distance in the same amount of time, they showed that all light, no matter its energy, moves at the same speed through the vacuum of space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

The Fermi Gamma-ray Space Telescope is a satellite in low-Earth orbit that detects gamma rays from exotic objects like black holes, neutron stars and fast-moving jets of hot gas. For 11 years Fermi has seen some of the highest-energy bursts of light in the universe and is helping scientists understand where gamma rays come from.

Confused? Don’t be! We get a ton of questions about Fermi and figured we’d take a moment to answer a few of them here.

1. Who was this Fermi guy?

The Fermi telescope was named after Enrico Fermi in recognition of his work on how the tiny particles in space become accelerated by cosmic objects, which is crucial to understanding many of the objects that his namesake satellite studies.

Enrico Fermi was an Italian physicist and Nobel Prize winner (in 1938) who immigrated to the United States to be a professor of physics at Columbia University, later moving to the University of Chicago.

image

Original image courtesy Argonne National Laboratory

Over the course of his career, Fermi was involved in many scientific endeavors, including the Manhattan Project, quantum theory and nuclear and particle physics. He even engineered the first-ever atomic reactor in an abandoned squash court (squash is the older, English kind of racquetball) at the University of Chicago.

There are a number of other things named after Fermi, too: Fermilab, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute and more. (He’s kind of a big deal in the physics world.)

image

Fermi even had something to say about aliens! One day at lunch with his buddies, he wondered if extraterrestrial life existed outside our solar system, and if it did, why haven’t we seen it yet? His short conversation with friends sparked decades of research into this idea and has become known as the Fermi Paradox — given the vastness of the universe, there is a high probability that alien civilizations exist out there, so they should have visited us by now.  

2. So, does the Fermi telescope look for extraterrestrial life?

No. Although both are named after Enrico Fermi, the Fermi telescope and the Fermi Paradox have nothing to do with one another.

image

Fermi does not look for aliens, extraterrestrial life or anything of the sort! If aliens were to come our way, Fermi would be no help in identifying them, and they might just slip right under Fermi’s nose. Unless, of course, those alien spacecraft were powered by processes that left behind traces of gamma rays.

image

Fermi detects gamma rays, the highest-energy form of light, which are often produced by events so far away the light can take billions of years to reach Earth. The satellite sees pulsars, active galaxies powered by supermassive black holes and the remnants of exploding stars. These are not your everyday stars, but the heavyweights of the universe. 

3. Does the telescope shoot gamma rays?

No. Fermi DETECTS gamma rays using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM).

The LAT sees about one-fifth of the sky at a time and records gamma rays that are millions of times more energetic than visible light. The GBM detects lower-energy emissions, which has helped it identify more than 2,000 gamma-ray bursts – energetic explosions in galaxies extremely far away.

image

The highest-energy gamma ray from a gamma-ray burst was detected by Fermi’s LAT, and traveled 3.8 billion light-years to reach us from the constellation Leo.

4. Will gamma rays turn me into a superhero?

Nope. In movies and comic books, the hero has a tragic backstory and a brush with death, only to rise out of some radioactive accident stronger and more powerful than before. In reality, that much radiation would be lethal.

image

In fact, as a form of radiation, gamma rays are dangerous for living cells. If you were hit with a huge amount of gamma radiation, it could be deadly — it certainly wouldn’t be the beginning of your superhero career.

5. That sounds bad…does that mean if a gamma-ray burst hit Earth, it would wipe out the planet and destroy us all?

Thankfully, our lovely planet has an amazing protector from gamma radiation: an atmosphere. That is why the Fermi telescope is in orbit; it’s easier to detect gamma rays in space!

image

Gamma-ray bursts are so far away that they pose no threat to Earth. Fermi sees gamma-ray bursts because the flash of gamma rays they release briefly outshines their entire home galaxies, and can sometimes outshine everything in the gamma-ray sky.

image

If a habitable planet were too close to one of these explosions, it is possible that the jet emerging from the explosion could wipe out all life on that planet. However, the probability is extremely low that a gamma-ray burst would happen close enough to Earth to cause harm. These events tend to occur in very distant galaxies, so we’re well out of reach.

image

We hope that this has helped to clear up a few misconceptions about the Fermi Gamma-ray Space Telescope. It’s a fantastic satellite, studying the craziest extragalactic events and looking for clues to unravel the mysteries of our universe!

Now that you know the basics, you probably want to learn more!
Follow the Fermi Gamma-ray Space Telescope on Twitter (@NASAFermi) or Facebook (@nasafermi), and check out more awesome stuff on our Fermi webpage.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Say hello to the Jewel Box Cluster 👋

This Hubble Space Telescope image shows a young, open star cluster known as NGC 4755 or the Jewel Box. Just like old school friends that drift apart after graduation, the stars in open clusters only remain together for a limited time. They disperse into space over the course of a few hundred million years, pulled away by the gravitational tugs of other passing clusters and clouds of gas.

The Jewel Box is a spartan collection of just over 100 stars. The cluster is about 6,500 light-years away from Earth, which means that the light we see from it today was emitted before the Great Pyramids in Egypt were built.

Head outside and you can see it for yourself! The Jewel Box is visible to the naked eye, but will masquerade as a single star. Grab a pair of binoculars if you want to see more of the cluster’s sparkling stellar population. It is located in the southern constellation of the cross (Crux).

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

DYK the bright clusters and nebulae of planet Earth’s night sky are often named for flowers or insects? 

Though its wingspan covers over 3 light-years, NGC 6302: The Butterfly Nebula is no exception! With an estimated surface temperature of about 250,000 degrees C, the dying central star of this particular planetary nebula has become exceptionally hot, shining brightly in ultraviolet light but hidden from direct view by a dense torus of dust. This sharp close-up was recorded by the Hubble Space Telescope in 2009. The Hubble image data is reprocessed here, showing off the remarkable details of the complex planetary nebula.

Image Credit: NASA, ESA, Hubble, HLA; Reprocessing & Copyright: Robert Eder

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Bubble Nebula. Bubble Nebula. Bubble Nebula. 

It’s not just fun to say, it’s spectacular to admire. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

The Lagoon Nebula 

This colorful image, taken by our Hubble Space Telescope between Feb. 12 and Feb. 18, 2018 , celebrated the Earth-orbiting observatory’s 28th anniversary of viewing the heavens, giving us a window seat to the universe’s extraordinary tapestry of stellar birth and destruction.

At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust.

This region epitomizes a typical, raucous stellar nursery full of birth and destruction. The clouds may look majestic and peaceful, but they are in a constant state of flux from the star’s torrent of searing radiation and high-speed particles from stellar winds. As the monster star throws off its natal cocoon of material with its powerful energy, it is suppressing star formation around it.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

image

Ten years ago, on March 6, 2009, a rocket lifted off a launch pad at Cape Canaveral Air Force Station in Florida. It carried a passenger that would revolutionize our understanding of our place in the cosmos–NASA’s first planet hunter, the Kepler space telescope. The spacecraft spent more than nine years in orbit around the Sun, collecting an unprecedented dataset for science that revealed our galaxy is teeming with planets. It found planets that are in some ways similar to Earth, raising the prospects for life elsewhere in the cosmos, and stunned the world with many other first-of-a-kind discoveries. Here are five facts about the Kepler space telescope that will blow you away:

Kepler observed more than a half million stars looking for planets beyond our solar system.

image

It discovered more than 2,600 new worlds…

image

…many of which could be promising places for life.

image

Kepler’s survey revealed there are more planets than stars in our galaxy.

image

The spacecraft is now drifting around the Sun more than 94 million miles away from Earth in a safe orbit.

image

NASA retired the Kepler spacecraft in 2018. But to this day, researchers continue to mine its archive of data, uncovering new worlds.

*All images are artist illustrations. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com