Category: spaceflight

Optical Communications: Explore Lasers in Spac…

image

When we return to the Moon, much will seem unchanged since
humans first arrived in 1969. The flags placed by Apollo
astronauts will be untouched by any breeze. The footprints left by man’s “small
step” on its surface will still be visible across the Moon’s dusty landscape.

Our next generation of lunar explorers will require
pioneering innovation alongside proven communications technologies. We’re
developing groundbreaking technologies to help these astronauts fulfill their
missions.

In space communications networks, lasers will supplement
traditional radio communications, providing an advancement these explorers
require. The technology, called optical communications, has been in development
by our engineers over decades.

image

Optical
communications
, in infrared, has a higher frequency than radio,
allowing more data to be encoded into each transmission. Optical communications
systems also have reduced size, weight and power requirements. A smaller system
leaves more room for science instruments; a weight reduction can mean a less
expensive launch, and reduced power allows batteries to last longer.

image

On the path through this “Decade of Light,” where laser
joins radio to enable mission success, we must test and demonstrate a number of
optical communications innovations.

image

The Laser Communications Relay Demonstration
(LCRD) mission will send data between ground stations in Hawaii and California
through a spacecraft in an orbit stationary relative to Earth’s rotation. The
demo will be an important first step in developing next-generation Earth-relay
satellites that can support instruments generating too much data for today’s
networks to handle.

image

The Integrated LCRD Low-Earth Orbit User Modem
and Amplifier-Terminal
will provide the International
Space Station
with a fully operational optical communications
system. It will communicate data from the space station to the ground through
LCRD. The mission applies technologies from previous optical communications
missions for practical use in human spaceflight.

image

In deep space, we’re working to prove laser technologies
with our Deep Space
Optical Communications
mission. A laser’s wavelength is smaller than
radio, leaving less margin for error in pointing back at Earth from very, very
far away. Additionally, as the time it takes for data to reach Earth increases,
satellites need to point ahead to make sure the beam reaches the right spot at
the right time. The Deep Space Optical Communications mission will ensure that
our communications engineers can meet those challenges head-on.

image

An integral part of our journey back to the Moon will be our
Orion
spacecraft
. It looks remarkably similar to the Apollo capsule, yet it
hosts cutting-edge technologies. NASA’s Laser Enhanced Mission Communications
Navigation and Operational Services (LEMNOS) will provide Orion with data rates
as much as 100 times higher than current systems.

LEMNOS’s optical terminal, the Orion EM-2 Optical
Communications System, will enable live, 4K ultra-high-definition video from
the Moon. By comparison, early Apollo cameras filmed only 10 frames per second
in grainy black-and-white. Optical communications will provide a “giant leap”
in communications technology, joining radio for NASA’s return to the Moon and the
journey beyond.

image

NASA’s Space
Communications and Navigation program office provides strategic oversight to optical
communications research. At NASA’s Goddard Space Flight Center in Greenbelt,
Maryland, the Exploration and Space Communications projects division is guiding
a number of optical communications technologies from infancy to fruition. If
you’re ever near Goddard, stop by our visitor center to check out our new
optical communications exhibit. For more information, visit nasa.gov/SCaN
and esc.gsfc.nasa.gov.

Hostile and Closed Environments, Hazards at Cl…

A
human journey to Mars, at first
glance, offers an inexhaustible amount of complexities. To bring a mission to
the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards
astronauts will encounter on a continual basis into five classifications.

A spacecraft is not only a home,
it’s also a machine. NASA understands that the ecosystem inside a vehicle plays
a big role in everyday astronaut life.

Important habitability factors
include temperature, pressure, lighting, noise, and quantity of space. It’s
essential that astronauts are getting the requisite food, sleep and exercise
needed to stay healthy and happy. The space environment introduces challenges
not faced on Earth.

Technology, as often is the case
with out-of-this-world exploration, comes to the rescue! Technology plays a big
role in creating a habitable home in a harsh environment and monitoring some of
the environmental conditions.

Astronauts are also asked to
provide feedback about their living environment, including physical impressions
and sensations so that the evolution of spacecraft can continue addressing the
needs of humans in space.

Exploration to the Moon and Mars will expose astronauts to five
known hazards of spaceflight, including hostile and closed environments, like
the closed environment of the vehicle itself. To learn more, and find out what
NASA’s Human Research Program is doing to protect humans in
space, check out the “Hazards of Human Spaceflight" website.
Or, check out this week’s episode of “Houston
We Have a Podcast,” in which host Gary Jordan
further dives into the threat of hostile and closed environments with Brian
Crucian, NASA immunologist at the Johnson Space Center.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Gravity, Hazard of Alteration

A
human journey to Mars, at first
glance, offers an inexhaustible amount of complexities. To bring a mission to
the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards
astronauts will encounter on a continual basis into five classifications.

image

The variance of gravity fields that
astronauts will encounter on a mission to Mars is the fourth hazard.

image

On Mars, astronauts would need to
live and work in three-eighths of Earth’s gravitational pull for up to two
years. Additionally, on the six-month trek between the planets, explorers will
experience total weightlessness. 

image

Besides Mars and deep space there
is a third gravity field that must be considered. When astronauts finally
return home they will need to readapt many of the systems in their bodies to
Earth’s gravity.

image

To further complicate the problem,
when astronauts transition from one gravity field to another, it’s usually
quite an intense experience. Blasting off from the surface of a planet or a
hurdling descent through an atmosphere is many times the force of gravity.

image

Research is being conducted to
ensure that astronauts stay healthy before, during and after their mission.
Specifically researchers study astronauts’
vision, fine motor skills, fluid distribution, exercise protocols and response to
pharmaceuticals.

image

Exploration to the Moon and Mars will expose astronauts to five
known hazards of spaceflight, including gravity. To learn more, and find out
what NASA’s Human Research Program is doing to protect humans in
space, check out the “Hazards of Human Spaceflight" website.
Or, check out this week’s episode of “Houston
We Have a Podcast
,” in which host Gary Jordan
further dives into the threat of gravity with Peter
Norsk,
Senior Research Director/ Element Scientist at
the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Meet Our New Flight Directors!

We just hired six new flight directors to join a unique group of individuals who lead human spaceflights from mission control at our Johnson Space Center in Houston.

A flight director manages all human spaceflight missions and related test flights, including International Space Station missions, integration of new American-made commercial spacecraft and developing plans for future Orion missions to the Moon and beyond. 

Only 97 people have served as flight directors, or are in training to do so, in the 50-plus years of human spaceflight. That’s fewer than the over 300 astronauts!
We talked with the new class about their upcoming transitions, how to keep calm in stressful situations, the importance of human spaceflight and how to best learn from past mistakes. Here’s what they had to say…

Allison Bollinger

Allison is from Lancaster, Ohio and received a BS in Aerospace Engineering from Purdue University. She wanted to work at NASA for as long as she can remember. “I was four-and-a-half when Challenger happened,” she said. “It was my first childhood memory.” Something in her clicked that day. “After, when people asked what I wanted to be when I grew up, I said an astronaut.” 

By high school a slight fear of heights, a propensity for motion sickness and an aptitude for engineering shifted her goal a bit. She didn’t want to be an astronaut. “I wanted to train astronauts,” she said. Allison has most recently worked as at our Neutral Buoyancy Lab managing the daily operations of the 40-ft-deep pool the astronauts use for spacewalk training! She admits she’ll miss “the smell of chlorine each day. Coming to work at one of the world’s largest pools and training astronauts is an incredible job,” she says. But she’s excited to be back in mission control, where in a previous role she guided astronauts through spacewalks. 

She’s had to make some tough calls over the years. So we asked her if she had any tips for when something… isn’t going as planned. She said, “It’s so easy to think the sky is falling. Take a second to take a deep breath, and then you’ll realize it’s not as bad as you thought.”

Adi Boulos

Adi is from Chicago, Illinois and graduated from the University of Illinois Urbana Champaign with a BS in Aerospace Engineering. He joined us in 2008 as a member of the very first group of flight controllers that specialize in data handling and communications and tracking systems aboard the space station. 

Most recently he served as the group lead in the Avionics Trainee group, which he loved. “I was managing newer folks just coming to NASA from college and getting to become flight controllers,” he said. “I will miss getting to mentor them from day one.” But he’s excited to start his new role alongside some familiar faces already in mission control. “It’s a great group of people,” he said of his fellow 2018 flight director class. “The six of us, we mesh well together, and we are all from very diverse backgrounds.” 

As someone who has spent most of his career supporting human spaceflight and cargo missions from mission control, we asked him why human spaceflight is so important. He had a practical take. “It allows us to solve problems we didn’t know we had,” he said. “For example, when we went to the moon, we had to solve all kinds of problems on how to keep humans alive for long-duration flights in space which directly impacts how we live on the ground. All of the new technology we develop for living in space, we also use on the ground.”

Marcos Flores

Marcos is from Caguas, Puerto Rico and earned a BS in Mechanical Engineering from the University of Puerto Rico and an MS in Aerospace Engineering from Purdue University. Spanish is his first language; English is his second. 

The first time he came to the Continental US was on a trip to the Kennedy Space Center in Florida as a kid! “I always knew I wanted to work for NASA,” he said. “And I knew I wanted to be an engineer because I liked to break things to try to figure out how they worked.” He joined us in 2010 as an intern in a robotics laboratory working on conceptual designs for an experimental, autonomous land rover. He later transitioned to the space station flight control team, where he has led various projects, including major software transitions, spacewalks and commercial cargo missions! 

He shares his new coworkers’ thoughts on the practical aspects of human spaceflight and believes it’s an expression of our “drive to explore” and our “innate need to know the world and the universe better.” But for him, “It’s more about answering the fundamental questions of where we come from and where we’re headed.”

Pooja Jesrani

Pooja graduated from The University of Texas at Austin with a BS in Aerospace Engineering. She began at NASA in 2007 as a flight controller responsible for the motion control system of the International Space Station. She currently works as a Capsule Communicator, talking with the astronauts on the space station, and on integration with the Boeing Starliner commercial crew spacecraft. 

She has a two-year-old daughter, and she’s passionate about motherhood, art, fashion, baking, international travel and, of course, her timing as a new flight director! “Not only have we been doing International Space Station operations continuously, and we will continue to do that, but we are about to launch U.S. crewed vehicles off of U.S. soil for the first time since the space shuttle in 2011. Exploration is ramping up and taking us back to the moon!” she said.” “By the time we get certified, a lot of the things we will get to do will be next-gen.”  

We asked her if she had any advice for aspiring flight directors who might want to support such missions down the road. “Work hard every day,” she said. “Every day is an interview. And get a mentor. Or multiple mentors. Having mentorship while you progress through your career is very important, and they really help guide you in the right direction.”

Paul Konyha

Paul was born in Manhasset, NY, and has a BS in Mechanical Engineering from Louisiana Tech University, a Master’s of Military Operational Arts and Science from Air University, and an MS in Astronautical Engineering from the University of Southern California. He began his career as an officer in the United States Air Force in 1996 and authored the Air Force’s certification guide detailing the process through which new industry launch vehicles (including SpaceX’s Falcon 9) gain approval to launch Department of Defense (DoD) payloads. 

As a self-described “Star Wars kid,” he has always loved space and, of course, NASA! After retiring as a Lieutenant Colonel in 2016, Paul joined Johnson Space Center as the Deputy Director of the DoD Space Test Program Human Spaceflight Payloads Office. He’s had a rich career in some pretty high-stakes roles. We asked him for advice on handling stress and recovering from life’s occasional setbacks. “For me, it’s about taking a deep breath, focusing on the data and trying not to what if too much,” he said. “Realize that mistakes are going to happen. Be mentally prepared to know that at some point it’s going to happen—you’re going to have to do that self-reflection to understand what you could’ve done better and how you’ll fix it in the future. That constant process of evaluation and self-reflection will help you get through it.”

Rebecca Wingfield

Rebecca is from Princeton, Kentucky and has a BS in Mechanical Engineering from the University of Kentucky and an MS in Systems Engineering from the University of Houston, Clear Lake. She joined us in 2007 as a flight controller responsible for maintenance, repairs and hardware installations aboard the space station. 

Since then, she’s worked as a capsule communicator for the space station and commercial crew programs and on training astronauts. She’s dedicated her career to human spaceflight and has a special appreciation for the program’s long-term benefits. “As our human race advances and we change our planet in lots of different ways, we may eventually need to get off of it,” she said. “There’s no way to do that until we explore a way to do it safely and effectively for mass numbers of people. And to do that, you have to start with one person.” We asked her if there are any misconceptions about flight directors. She responded, “While they are often steely-eyed missile men and women, and they can be rough around the edges, they are also very good mentors and teachers. They’re very much engaged in bringing up the next generation of flight controllers for NASA.”

Congrats to these folks on leading the future of human spaceflight! 

You can learn more about each of them HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Welcome Home HERA Mission XVII!

With the Human Exploration Research Analog (HERA) habitat, we
complete studies to prepare us for exploration to asteroids, Mars, and the Moon…
here on Earth! The studies are called analogs, and
they simulate space missions to study how different aspects of deep space
affect humans. During a HERA mission, the crew (i.e., the research participants)
live and work very much as astronauts do, with minimal contact with anyone
other than Mission Control for 45 days.

The most recent study, Mission XVII, just “returned
to Earth” on June 18
. (i.e., the participants egressed, or exited the
habitat at our Johnson Space Center in Houston after their 45-day study.) We
talked with the crew, Ellie, Will, Chi, and Michael, about the experience. Here
are some highlights!

Why did you decide to participate in
HERA Mission XVII?

image

HERA
Mission VXII participants (from left to right) Ellie, Will, Chi, and Michael.

“My master’s is in human factors,” said Chi, who studies the
interaction between humans and other systems at Embry-Riddle Aeronautical
University. “I figured this would be a cool way to study the other side of the
table and actually participate in an analog.” For Michael, who holds a PhD in
aerospace engineering and researches immunology and radio biology, it was an
opportunity to experience life as an astronaut doing science in space. “I’ve
flown [experiments] on the space station and shuttle,” he said. “Now I wanted
to see the other side.” For Will, a geosciences PhD, it provided an opportunity
to contribute to space exploration and neuroscience, which he considers two of
the biggest fields with the most potential in science. “Here, we have this
project that is the perfect intersection of those two things,” he said. And
Ellie, a pilot in the Air Force, learned about HERA while working on her
master’s thesis on Earth and space analogs and how to improve them for deep-space
studies. “A lot of my interests are similar to Chi’s,” she said. “Human factors
and physiological aspects are things that I find very fascinating.”

NASA missions all have patches, and
HERA Mission XVII is no different. Did you get to design your patch?

HERA
Mission VXII patch, which reads “May the Force be with you” in Latin and features
Star Wars iconography. It’s a reference to the mission’s start date, May 4th
aka Star Wars Day!

“We did!” They said …with a little the help from Michael’s brother, who is a designer. He drew
several different designs based on the crew’s ideas. They picked one and worked
together on tweaks. “We knew we were going [inside the habitat] on May Fourth,”
Michael said. “We knew it would be Star Wars Day. So we did a Star Wars theme.”
The patch had to come together fairly quickly though, since a Star Wars Day “launch”
wasn’t the initial plan. “We were supposed to start two weeks earlier,” Ellie
said. “It just so happened the new start date was May the Fourth!” Along with
the Star Wars imagery, the patch includes a hurricane symbol, to pay tribute to
hurricane Harvey which caused a previous crew to end their mission early, and
an image of the HERA habitat. Will joked that designing the patch
was “our first team task.”

How much free time did you have and
what did you do with it?

image

HERA
Mission XVII crew looking down the ladders inside the habitat.

“It was a decent amount,” Michael said. “I could have used
more on the harder days, but in a way it’s good we didn’t have more because
it’s harder to stay awake when you have nothing to do.” (The mission included a
sleep reduction study, which meant the crew only got five hours of sleep a
night five days a week.) “With the time I did have, I read a lot,” he said. He
also drew, kept a journal, and “wrote bad haikus.” Because of the sleep study, Ellie
didn’t read as much. “For me, had I tried to read or sit and do anything not
interactive, I would have fallen asleep,” she said.

image

The
crew’s art gallery, where they hung drawing and haikus they wrote.

Journaling and drawing were popular ways to pass the time. “We
developed a crew art gallery on one of the walls,” Will said. They also played
board games—in particular a game where you score points by making words with
lettered tiles on a 15×15 grid. (Yes that
one!) “Playing [that game] with two scientists wasn’t always fun though,” Ellie
joked, referencing some of the more obscure vocabulary words Will and Michael
had at the ready. “I was like, ‘What does that word mean?’ ‘Well that word
means lava flow,” she said laughing.
(The rest of the crew assured us she fared just fine.)

Chi tried reading, but found it difficult due to the dimmed
lights that were part of an onboard light study. She took on a side project
instead: 1000 paper cranes. “There is a story in Japan—I’m half Japanese—that
if you make a 1000 cranes, it’s supposed to grant you a wish,” she said. She
gave hers to her grandmother.

image

The
whole crew having dinner together on “Sophisticated Saturdays!” From left to
right: Will, Ellie, Chi, and Michael. They’re wearing their Saturday best,
which includes the usual research equipment.

On weekends, the crew got eight hours of sleep, which they
celebrated with “Sophisticated Saturdays!” “Coming in, we all brought an outfit
that was a little fancy,” Ellie said. (Like a tie, a vest, an athletic
dress—that kind of thing.) “We would only put it on Saturday evenings, and we’d
have dinner on the first level at the one and only table we could all sit at
and face each other,” she said. “We would pretend it was a different fancy
restaurant every week.”

image

The
table set for a “civilized” Saturday dinner. Once the crew’s hydroponics grew,
they were able to add some greenery to the table.

“It was a way to feel more civilized,” Will said, who then
offered another great use of their free time: establishing good habits. “I
would use the free time to journal, for example. I’d just keep it up every day.
That and stretching. Hydrating. Flossing.”

Like real astronauts, you were in
contact with Mission Control and further monitored by HERA personnel. Was it
weird being on camera all the time?

image

HERA
personnel and the monitors they use for a typical HERA mission.

“I was always aware of it,” Michael said, “but I don’t think
it changed my behavior. It’s not like I forgot about it. It was always there. I
just wasn’t willing to live paranoid for 45 days.” Ellie agreed. “It was always
in the back of my mind,” she said, further adding that they wore microphones
and various other sensors. “We were wired all the time,” she said.

After the study, the crew met up with the people
facilitating the experiments, sometimes for the first time. “It was really fun
to meet Mission Control afterwards,” Will said. “They had just been this voice
coming from the little boxes. It was great getting to meet them and put faces
to the voices,” he said. “Of course, they knew us well. Very well.”

For more information on HERA, visit our analogs homepage.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which began May 5, 2018 and ends today, June 18 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

The HERA XVII crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

  • William Daniels
  • Chiemi Heil
  • Eleanor Morgan
  • Michael Pecaut

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation.

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

  • The crew follows a timeline that is similar to one used for the space station crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.
  • Mission: May 5 – June 18, 2018

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE.

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Ever want to ask a real life astronaut a quest…

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronauts Drew Feustel & Ricky Arnold will be taking your questions in a Video Answer Time session. We’ll collect your questions and send them to space to be answered by the astronauts on Friday, May 18. We’ll record their answers and post them on Wednesday, May 23 here on NASA’s Tumblr. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

And don’t forget to submit your questions at http://nasa.tumblr.com/ask!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Astronaut Journal Entry – Launch & Docking

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

The launch went as planned. Our Soyuz spacecraft did a great job getting the three of us to the International Space Station (ISS).  

image

A week later, it all seems like a blur. The bus driver played me a video of my family and friends delivering their good luck messages. After exiting the bus at the launch pad, I was fortunate to have the Soyuz chief designer (Roman) and NASA’s associate administrator for Human Exploration and Operations (Bill Gerstenmaier) walk me to the stairs and elevator that would take us to the top of the rocket for boarding. The temperature at the pad was approximately -17 degrees centigrade, and we were wearing the Russian Polar Bear suits over our spacesuits in order to stay warm. Walking in these suits is a little hard, and I was happy to have Roman and Bill helping me. 

image

We walked into the fog created by the systems around the rocket, climbed the ladder, and waved goodbye. My last words before launch were to Bill, “Boiler Up!”. Bill is a fellow and very well-known Boilermaker. We strapped in, and the launch and docking were nominal. But I will add that the second stage cutoff and separation, and ignition of the third stage was very exciting. We were under approximately 4 Gs when the engine cutoff, which gave us a good jolt forward during the deceleration and then a good jolt back into the seat after the third stage ignited. I looked at Anton and we both began to giggle like school children.

We spent two days in orbit as our phase angle aligned with ISS. Surprisingly, I did not feel sick. I even got 4 hours of sleep the first night and nearly 6 hours the second night. Having not been able to use my diaper while sitting in the fetal position during launch, it was nice to get out of our seats and use the ACY (Russian toilet). Docking was amazing. I compared it to rendezvousing on a tanker in a fighter jet, except the rendezvous with ISS happened over a much larger distance. As a test pilot, it was very interesting to watch the vehicle capture and maintain the centerline of ISS’s MRM-1 docking port as well as capturing and maintaining the required speed profile. 

image

Just like landing at the ship, I could feel the vehicle’s control system (thrusters) making smaller and faster corrections and recorrections. In the flight test world, this is where the “gains” increase rapidly and where any weaknesses in the control system will be exposed. It was amazing to see the huge solar arrays and tons of equipment go by my window during final approach. What an engineering marvel the ISS is. Smooth sailing right into the docking port we went!  

image

About an hour later, after equalizing pressures between the station and Soyuz, we opened the hatch and greeted our friends already onboard. My first view of the inside of the space station looked pretty close to the simulators we have been training in for the last several years. My first words were, “Hey, what are you guys doing at Building 9?”. Then we tackled each other with celebratory hugs!

image

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Astronaut Journal Entry – Pre-Launch

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry written by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Our crew just finished the final training event before the launch. Tomorrow, at 13:20 local time (Baikonur), we will strap the Soyuz MS-07 spacecraft to our backs and fly it to low Earth orbit. We will spend 2.5 days in low Earth orbit before docking to the MRM-1 docking port on the International Space Station (ISS). There we will begin approximately 168 days of maintenance, service and science aboard one of the greatest engineering marvels that humans have ever created.

image

Today was bittersweet. Ending a 2-year process of intense training was welcomed by all of us. We are very tired. Seeing our families for the last time was difficult. I am pretty lucky, though. My wife, Raynette, and the kids have grown up around military service and are conditioned to endure the time spent apart during extended calls-to-duty. We are also very much anticipating the good times we will have upon my return in June. Sean and Amy showed me a few videos of them mucking it up at Red Square before flying out to Baikonur. Eric was impressed with the Russian guards marching in to relieve the watch at Red Square. Raynette was taking it all in stride and did not seem surprised by any of it. I think I might have a family of mutants who are comfortable anywhere. Nice! And, by the way, I am VERY proud of all of them!

image

Tomorrow’s schedule includes a wake-up at 04:00, followed by an immediate medical exam and light breakfast. Upon returning to our quarters, we will undergo a few simple medical procedures that should help make the 2.5-day journey to ISS a little more comfortable. I’ve begun prepping with motion sickness medication that should limit the nausea associated with the first phases of spaceflight. I will continue this effort through docking. This being my first flight, I’m not sure how my body will respond and am taking all precautions to maintain a good working capability. The commander will need my help operating the vehicle, and I need to not be puking into a bag during the busy times. We suit up at 09:30 and then report to the State Commission as “Готовы к Полёту”, or “Ready for Flight”. We’ll enter the bus, wave goodbye to our friends and family, and then head out to the launch pad. Approximately 2 kilometers from the launch pad, the bus will stop. 

image

The crew will get out, pee on the bus’s tire, and then complete the last part of the drive to the launch pad. This is a traditional event first done by Yuri Gagarin during his historic first flight and repeated in his honor to this day. We will then strap in and prepare the systems for launch. Next is a waiting game of approximately 2 hours. Ouch. The crew provided five songs each to help pass the time. My playlist included “Born to Run” (Springsteen), “Sweet Child O’ Mine” (Guns and Roses), “Cliffs of Dover” (Eric Johnson), “More than a Feeling” (Boston), and “Touch the Sky” (Rainbow Bridge, Russian). Launch will happen precisely at 13:20.

image

I think this sets the stage. It’s 21:30, only 6.5 hours until duty calls. Time to get some sleep. If I could only lower my level of excitement!

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which begins Feb. 1, 2018 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

image

The HERA XVI crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

  • Kent Kalogera
  • Jennifer Yen
  • Erin Hayward
  • Gregory Sachs

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

image

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation. 

image

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

  • The crew follows a timeline that is similar to one used for the space station crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.
  • Mission: February 1, 2018 – March 19, 2018
image

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com