Category: solar system

What Can We Learn from the Universe’s Baby Pic…

If you look at your baby photos, you might see hints of the person you are today — a certain look in the eyes, maybe the hint of your future nose or ears. In the same way, scientists examine the universe’s “baby picture” for clues about how it grew into the cosmos we know now. This baby photo is the cosmic microwave background (CMB), a faint glow that permeates the universe in all directions.

In late September, NASA plans to launch a balloon-based astronomical observatory from Fort Sumner, New Mexico, to study the universe’s baby picture. Meet PIPER! The Primordial Inflation Polarization Explorer will fly at the edge of our atmosphere to look for subtle patterns in the CMB.

image

The CMB is cold. Really, really cold. The average temperature is around minus 455 degrees Fahrenheit. It formed 380,000 years after the big bang, which scientists think happened about 13.8 billion years ago. When it was first discovered, the CMB temperature looked very uniform, but researchers later found there are slight variations like hot and cold spots. The CMB is the oldest light in the universe that we can see. Anything before the CMB is foggy — literally.

image

Credit: Rob van Hal

Before the CMB, the universe was a fog of hot, dense plasma. (By hot, we’re talking about 500 million degrees F.) That’s so hot that atoms couldn’t exist yet – there was just a soup of electrons and protons. Electrons are great at deflecting light. So, any light that existed in the first few hundred thousand years after the big bang couldn’t travel very far before bouncing off electrons, similar to the way a car’s headlights get diffused in fog.  

image

After the big bang, the universe started expanding rapidly in all directions. This expansion is still happening today. As the universe continued to expand, it cooled. By the time the universe reached its 380,000th birthday, it had cooled enough that electrons and protons could combine into hydrogen atoms for the first time. (Scientists call this era recombination.) Hydrogen atoms don’t deflect light nearly as well as loose electrons and the fog lifted. Light could now travel long distances across the universe.

image

The light we see in the CMB comes from the recombination era. As it traveled across the universe, through the formation of stars and galaxies, it lost energy. Now we observe it in the microwave part of the electromagnetic spectrum, which is less energetic than visible light and therefore invisible to our eyes. The first baby photo of the CMB – really, a map of the sky in microwaves – came from our Cosmic Background Explorer, which operated from 1989 to 1993.

image

Why are we so interested in the universe’s baby picture? Well, it’s helped us learn a lot about the structure of the universe around us today. For example, the Wilkinson Microwave Anisotropy Probe produced a detailed map of the CMB and helped us learn that the universe is 68 percent dark energy, 27 percent dark matter and just 5 percent normal matter — the stuff that you and stars are made of.

image

Right after the big bang, we’re pretty sure the universe was tiny. Really tiny. Everything we see today would have been stuffed into something smaller than a proton. If the universe started out that small, then it would have followed the rules of quantum mechanics. Quantum mechanics allows all sorts of strange things to happen. Matter and energy can be “borrowed” from the future then crash back into nothingness. And then cosmic inflation happened and the universe suddenly expanded by a trillion trillion times.

image

All this chaos creates a sea of gravitational waves. (These are called “primordial” gravitational waves and come from a different source than the gravitational waves you may have heard about from merging neutron stars and black holes.) The signal of the primordial gravitational waves is a bit like white noise, where the signal from merging dead stars is like a whistle you can pick up over the noise.

These gravitational waves filled the baby universe and created distinct patterns, called B-mode polarization, in the CMB light. These patterns have handedness, which means even though they’re mirror images of each other, they’re not symmetrical — like trying to wear a left-hand glove on your right hand. They’re distinct from another kind of polarization called E-mode, which is symmetrical and echoes the distribution of matter in the universe.

That’s where PIPER comes in. PIPER’s two telescopes sit in a hot-tub-sized container of liquid helium, which runs about minus 452 degrees F. It’ll look at 85 percent of the sky and is extremely sensitive, so it will help us learn even more about the early days of the universe. By telling us more about polarization and those primordial gravitational waves, PIPER will help us understand how the early universe grew from that first baby picture.

image

PIPER’s first launch window in Fort Sumner, New Mexico, is in late September. When it’s getting ready to launch, you’ll be able to watch the balloon being filled on the Columbia Scientific Balloon Facility website. Follow NASA Blueshift on Twitter or Facebook for updates about PIPER and when the livestream will be available.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

10 Things to Know About Parker Solar Probe

On Aug. 12, 2018, we launched Parker Solar Probe to the Sun, where it will fly closer than any spacecraft before and uncover new secrets about our star. Here’s what you need to know.

image

1. Getting to the Sun takes a lot of power

At about 1,400 pounds, Parker Solar Probe is relatively light for a spacecraft, but it launched to space aboard one of the most powerful rockets in the world, the United Launch Alliance Delta IV Heavy. That’s because it takes a lot of energy to go to the Sun — in fact, 55 times more energy than it takes to go to Mars.

Any object launched from Earth starts out traveling at about the same speed and in the same direction as Earth — 67,000 mph sideways. To get close to the Sun, Parker Solar Probe has to shed much of that sideways speed, and a strong launch is good start.

image

2. First stop: Venus!

Parker Solar Probe is headed for the Sun, but it’s flying by Venus along the way. This isn’t to see the sights — Parker will perform a gravity assist at Venus to help draw its orbit closer to the Sun. Unlike most gravity assists, Parker will actually slow down, giving some orbital energy to Venus, so that it can swing closer to the Sun.

One’s not enough, though. Parker Solar Probe will perform similar maneuvers six more times throughout its seven-year mission!

image

3. Closer to the Sun than ever before

At its closest approach toward the end of its seven-year prime mission, Parker Solar Probe will swoop within 3.83 million miles of the solar surface. That may sound pretty far, but think of it this way: If you put Earth and the Sun on opposite ends of an American football field, Parker Solar Probe would get within four yards of the Sun’s end zone. The current record-holder was a spacecraft called Helios 2, which came within 27 million miles, or about the 30 yard line. Mercury orbits at about 36 million miles from the Sun.

This will place Parker well within the Sun’s corona, a dynamic part of its atmosphere that scientists think holds the keys to understanding much of the Sun’s activity.

image

4. Faster than any human-made object

Parker Solar Probe will also break the record for the fastest spacecraft in history. On its final orbits, closest to the Sun, the spacecraft will reach speeds up to 430,000 mph. That’s fast enough to travel from New York to Tokyo in less than a minute!

image

5. Dr. Eugene Parker, mission namesake

Parker Solar Probe is named for Dr. Eugene Parker, the first person to predict the existence of the solar wind. In 1958, Parker developed a theory showing how the Sun’s hot corona — by then known to be millions of degrees Fahrenheit — is so hot that it overcomes the Sun’s gravity. According to the theory, the material in the corona expands continuously outwards in all directions, forming a solar wind.

This is the first NASA mission to be named for a living person, and Dr. Parker watched the launch with the mission team from Kennedy Space Center in Florida.

image

6. Unlocking the secrets of the solar wind

Even though Dr. Parker predicted the existence of the solar wind 60 years ago, there’s a lot about it we still don’t understand. We know now that the solar wind comes in two distinct streams, fast and slow. We’ve identified the source of the fast solar wind, but the slow solar wind is a bigger mystery.

Right now, our only measurements of the solar wind happen near Earth, after it has had tens of millions of miles to blur together, cool down and intermix. Parker’s measurements of the solar wind, just a few million miles from the Sun’s surface, will reveal new details that should help shed light on the processes that send it speeding out into space.

7. Studying near-light speed particles

Another question we hope to answer with Parker Solar Probe is how some particles can accelerate away from the Sun at mind-boggling speeds — more than half the speed of light, or upwards of 90,000 miles per second. These particles move so fast that they can reach Earth in under half an hour, so they can interfere with electronics on board satellites with very little warning.

image

8. The mystery of the corona’s high heat

The third big question we hope to answer with this mission is something scientists call the coronal heating problem. Temperatures in the Sun’s corona, where Parker Solar Probe will fly, spike upwards of 2 million degrees Fahrenheit, while the Sun’s surface below simmers at a balmy 10,000 F. How the corona gets so much hotter than the surface remains one of the greatest unanswered questions in astrophysics.

Though scientists have been working on this problem for decades with measurements taken from afar, we hope measurements from within the corona itself will help us solve the coronal heating problem once and for all.

image

9. Why won’t Parker Solar Probe melt?

The corona reaches millions of degrees Fahrenheit, so how can we send a spacecraft there without it melting?

The key lies in the distinction between heat and temperature. Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is incredibly thin, and there are very few particles there to transfer energy — so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).

It’s like the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don’t try this at home!). In the air of the oven, your hand doesn’t get nearly as hot as it would in the much denser water of the boiling pot.

image

10. Engineered to thrive in an extreme environment

Make no mistake, the environment in the Sun’s atmosphere is extreme — hot, awash in radiation, and very far from home — but Parker Solar Probe is engineered to survive.

The spacecraft is outfitted with a cutting-edge heat shield made of a carbon composite foam sandwiched between two carbon plates. The heat shield is so good at its job that, even though the front side will receive the full brunt of the Sun’s intense light, reaching 2,500 F, the instruments behind it, in its shadow, will remain at a cozy 85 F.

Even though Parker Solar Probe’s solar panels — which provide the spacecraft’s power — are retractable, even the small bit of surface area that peeks out near the Sun is enough to make them prone to overheating. So, to keep its cool, Parker Solar Probe circulates a single gallon of water through the solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator.

For much of its journey, Parker Solar Probe will be too far from home and too close to the Sun for us to command it in real time — but don’t worry, Parker Solar Probe can think on its feet. Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors — and the rest of the instruments — safely protected behind the heat shield.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Gravity, Hazard of Alteration

A
human journey to Mars, at first
glance, offers an inexhaustible amount of complexities. To bring a mission to
the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards
astronauts will encounter on a continual basis into five classifications.

image

The variance of gravity fields that
astronauts will encounter on a mission to Mars is the fourth hazard.

image

On Mars, astronauts would need to
live and work in three-eighths of Earth’s gravitational pull for up to two
years. Additionally, on the six-month trek between the planets, explorers will
experience total weightlessness. 

image

Besides Mars and deep space there
is a third gravity field that must be considered. When astronauts finally
return home they will need to readapt many of the systems in their bodies to
Earth’s gravity.

image

To further complicate the problem,
when astronauts transition from one gravity field to another, it’s usually
quite an intense experience. Blasting off from the surface of a planet or a
hurdling descent through an atmosphere is many times the force of gravity.

image

Research is being conducted to
ensure that astronauts stay healthy before, during and after their mission.
Specifically researchers study astronauts’
vision, fine motor skills, fluid distribution, exercise protocols and response to
pharmaceuticals.

image

Exploration to the Moon and Mars will expose astronauts to five
known hazards of spaceflight, including gravity. To learn more, and find out
what NASA’s Human Research Program is doing to protect humans in
space, check out the “Hazards of Human Spaceflight" website.
Or, check out this week’s episode of “Houston
We Have a Podcast
,” in which host Gary Jordan
further dives into the threat of gravity with Peter
Norsk,
Senior Research Director/ Element Scientist at
the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Take a deep breath. Even if the air looks clea…

Take a deep breath. Even if the air looks clear, it is nearly certain that you will inhale millions of solid particles and liquid droplets. These ubiquitous specks of matter are known as aerosols, and they can be found in the air over oceans, deserts, mountains, forests, ice, and every ecosystem in between.

If you have ever watched smoke billowing from a wildfire, ash erupting from a volcano, or dust blowing in the wind, you have seen aerosols. Satellites like Terra, Aqua, Aura, and Suomi NPP “see” them as well, though they offer a completely different perspective from hundreds of kilometers above Earth’s surface. A version of one of our models called the Goddard Earth Observing System Forward Processing (GEOS FP) offers a similarly expansive view of the mishmash of particles that dance and swirl through the atmosphere.

The visualization above highlights GEOS FP model output for aerosols on August 23, 2018. On that day, huge plumes of smoke drifted over North America and Africa, three different tropical cyclones churned in the Pacific Ocean, and large clouds of dust blew over deserts in Africa and Asia. The storms are visible within giant swirls of sea salt aerosol(blue), which winds loft into the air as part of sea spray. Black carbon particles (red) are among the particles emitted by fires; vehicle and factory emissions are another common source. Particles the model classified as dust are shown in purple. The visualization includes a layer of night light data collected by the day-night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP that shows the locations of towns and cities.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

In Conversation with the Sun: Parker Solar Pro…

Our Sun powers life on Earth. It defines our days, nourishes our
crops and even fuels our electrical grids. In our pursuit of knowledge
about the universe, we’ve learned so much about the Sun, but in many ways we’re
still in conversation with it, curious about its mysteries.

image

Parker Solar
Probe
will advance this conversation, flying
through the Sun’s atmosphere as close as 3.8 million miles from our star’s
surface, more than seven times closer to it than any previous spacecraft. If
space were a football field, with Earth at one end and the Sun at the other,
Parker would be at the four-yard line, just steps away from the Sun! This
journey will revolutionize our understanding of the Sun, its surface and solar
winds.

image

Supporting Parker on its journey to the
Sun are our communications networks. Three networks, the Near Earth Network,
the Space
Network
and the Deep Space Network, provide our
spacecraft with their communications, delivering their data to mission
operations centers. Their services ensure that missions like Parker have
communications support from launch through the mission.

image

For Parker’s launch
on Aug. 12, the Delta IV Heavy rocket that sent Parker skyward relied on the Space
Network. A team at Goddard Space Flight Center’s Networks Integration Center
monitored the launch, ensuring that we maintained tracking and communications
data between the rocket and the ground. This data is vital, allowing engineers
to make certain that Parker stays on the right path towards its orbit around
the Sun.

image

The Space Network’s constellation of Tracking and Data
Relay Satellites
(TDRS) enabled constant communications coverage for
the rocket as Parker made its way out of Earth’s atmosphere. These satellites
fly in geosynchronous orbit, circling Earth in step with its rotation, relaying
data from spacecraft at lower altitudes to the ground. The network’s three collections
of TDRS over the Atlantic, Pacific and Indian oceans provide enough coverage
for continuous communications for satellites in low-Earth orbit.

image

The Near Earth Network’s Launch
Communications Segment tracked early stages of Parker’s launch, testing our brand
new ground stations’ ability to provide crucial information about the rocket’s
initial velocity (speed) and trajectory (path). When fully operational, it will
support launches from the Kennedy spaceport, including upcoming Orion
missions. The Launch Communications Segment’s three ground stations are located
at Kennedy Space Center; Ponce De Leon, Florida; and Bermuda. 

image

When Parker separated from the Delta IV
Heavy, the Deep Space Network took over. Antennas up to 230 feet in diameter at
ground stations in California, Australia and Spain are supporting Parker for
its 24 orbits around the Sun and the seven Venus flybys that gradually shrink
its orbit, bringing it closer and closer to the Sun. The Deep Space Network is
delivering data to mission operations centers and will continue to do so as
long as Parker is operational.

Near the
Sun, radio interference and the heat load on the spacecraft’s antenna makes
communicating with Parker a challenge that we must plan for. Parker has three
distinct communications phases, each corresponding to a different part of its
orbit.

When Parker comes closest to the Sun, the
spacecraft will emit a beacon tone that tells engineers on the ground about its
health and status, but there will be very little opportunity to command the
spacecraft and downlink data. High data rate transmission will only occur
during a portion of Parker’s orbit, far from the Sun. The rest of the time,
Parker will be in cruise mode, taking measurements and being commanded through
a low data rate connection with Earth.

image

Communications infrastructure is vital to
any mission. As Parker journeys ever closer to the center of our solar system,
each byte of downlinked data will provide new insight into our Sun. It’s a
mission that continues a conversation between us and our star that has lasted many
millions of years and will continue for many millions more.

For more information about NASA’s mission
to touch the Sun: https://www.nasa.gov/content/goddard/parker-solar-probe

For more information about our satellite
communications check out: http://nasa.gov/SCaN


Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Solar System 10 Things: Spitzer Space Telescop…

Our Spitzer Space Telescope is celebrating 15 years since its launch on August 25, 2003. This remarkable spacecraft has made discoveries its designers never even imagined, including some of the seven Earth-size planets of TRAPPIST-1. Here are some key facts about Spitzer:

1. Spitzer is one of our Great Observatories.

Our Great Observatory Program aimed to explore the universe with four large space telescopes, each specialized in viewing the universe in different wavelengths of light. The other Great Observatories are our Hubble Space Telescope, Chandra X-Ray Observatory, and Compton Gamma-Ray Observatory. By combining data from different kinds of telescopes, scientists can paint a fuller picture of our universe.

2. Spitzer operates in infrared light.

Infrared wavelengths of light, which primarily come from heat radiation, are too long to be seen with human eyes, but are important for exploring space — especially when it comes to getting information about something extremely far away. From turbulent clouds where stars are born to small asteroids close to Earth’s orbit, a wide range of phenomena can be studied in infrared light. Objects too faint or distant for optical telescopes to detect, hidden by dense clouds of space dust, can often be seen with Spitzer. In this way, Spitzer acts as an extension of human vision to explore the universe, near and far.

What’s more, Spitzer doesn’t have to contend with Earth’s atmosphere, daily temperature variations or day-night cycles, unlike ground-based telescopes. With a mirror less than 1 meter in diameter, Spitzer in space is more sensitive than even a 10-meter-diameter telescope on Earth.

3. Spitzer was the first spacecraft to fly in an Earth-trailing orbit.

Rather than circling Earth, as Hubble does, Spitzer orbits the Sun on almost the same path as Earth. But Spitzer moves slower than Earth, so the spacecraft drifts farther away from our planet each year.

This “Earth-trailing orbit” has many advantages. Being farther from Earth than a satellite, it receives less heat from our planet and enjoys a naturally cooler environment. Spitzer also benefits from a wider view of the sky by orbiting the Sun. While its field of view changes throughout the year, at any given time it can see about one-third of the sky. Our Kepler space telescope, famous for finding thousands of exoplanets – planets outside our solar system – also settled in an Earth-trailing orbit six years after Spitzer.

4. Spitzer began in a “cold mission.”

Spitzer has far outlived its initial requirement of 2.5 years. The Spitzer team calls the first 5.5 years “the cold mission” because the spacecraft’s instruments were deliberately cooled down during that time. Liquid helium coolant kept Spitzer’s instruments just a few degrees above absolute zero (which is minus 459 degrees Fahrenheit, or minus 273 degrees Celsius) in this first part of the mission.

5. The “warm mission” was still pretty cold.

Spitzer entered what was called the “warm mission” when the 360 liters of liquid helium coolant that was chilling its instruments ran out in May 2009.

At the “warm” temperature of minus 405 Fahrenheit, two of Spitzer’s instruments – the Infrared Spectrograph (IRS) and Multiband Imaging Photometer (MIPS) – stopped working. But two of the four detector arrays in the Infrared Array Camera (IRAC) persisted. These “channels” of the camera have driven Spitzer’s explorations since then.

6. Spitzer wasn’t designed to study exoplanets, but made huge strides in this area.

Exoplanet science was in its infancy in 2003 when Spitzer launched, so the mission’s first scientists and engineers had no idea it could observe planets beyond our solar system. But the telescope’s accurate star-targeting system and the ability to control unwanted changes in temperature have made it a useful tool for studying exoplanets. During the Spitzer mission, engineers have learned how to control the spacecraft’s pointing more precisely to find and characterize exoplanets, too.

Using what’s called the “transit method,” Spitzer can stare at a star and detect periodic dips in brightness that happen when a planet crosses a star’s face. In one of its most remarkable achievements, Spitzer discovered three of the TRAPPIST-1 planets and confirmed that the system has seven Earth-sized planets orbiting an ultra-cool dwarf star. Spitzer data also helped scientists determine that all seven planets are rocky, and made these the best-understood exoplanets to date.

Spitzer can also use a technique called microlensing to find planets closer to the center of our galaxy. When a star passes in front of another star, the gravity of the first star can act as a lens, making the light from the more distant star appear brighter. Scientists are using microlensing to look for a blip in that brightening, which could mean that the foreground star has a planet orbiting it. Microlensing could not have been done early in the mission when Spitzer was closer to Earth, but now that the spacecraft is farther away, it has a better chance of measuring these events.

7. Spitzer is a window into the distant past.

The spacecraft has observed and helped discover some of the most distant objects in the universe, helping scientists understand where we came from. Originally, Spitzer’s camera designers had hoped the spacecraft would detect galaxies about 12 billion light-years away. In fact, Spitzer has surpassed that, and can see even farther back in time – almost to the beginning of the universe. In collaboration with Hubble, Spitzer helped characterize the galaxy GN-z11 about 13.4 billion light-years away, whose light has been traveling since 400 million years after the big bang. It is the farthest galaxy known.

8. Spitzer discovered Saturn’s largest ring.

Everyone knows Saturn has distinctive rings, but did you know its largest ring was only discovered in 2009, thanks to Spitzer? Because this outer ring doesn’t reflect much visible light, Earth-based telescopes would have a hard time seeing it. But Spitzer saw the infrared glow from the cool dust in the ring. It begins 3.7 million miles (6 million kilometers) from Saturn and extends about 7.4 million miles (12 million kilometers) beyond that.

9. The “Beyond Phase” pushes Spitzer to new limits.

In 2016, Spitzer entered its “Beyond phase,” with a name reflecting how the spacecraft operates beyond its original scope.

As Spitzer floats away from Earth, its increasing distance presents communication challenges. Engineers must point Spitzer’s antenna at higher angles toward the Sun in order to talk to our planet, which exposes the spacecraft to more heat. At the same time, the spacecraft’s solar panels receive less sunlight because they point away from the Sun, putting more stress on the battery.

The team decided to override some autonomous safety systems so Spitzer could continue to operate in this riskier mode. But so far, the Beyond phase is going smoothly.

10. Spitzer paves the way for future infrared telescopes.

Spitzer has identified areas of further study for our upcoming James Webb Space Telescope, planned to launch in 2021. Webb will also explore the universe in infrared light, picking up where Spitzer eventually will leave off. With its enhanced ability to probe planetary atmospheres, Webb may reveal striking new details about exoplanets that Spitzer found. Distant galaxies unveiled by Spitzer together with other telescopes will also be observed in further detail by Webb. The space telescope we are planning after that, WFIRST, will also investigate long-standing mysteries by looking at infrared light. Scientists planning studies with future infrared telescopes will naturally build upon the pioneering legacy of Spitzer.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

Parker Solar Probe is Go for Launch

Tomorrow, Aug. 11, we’re launching a spacecraft to touch the Sun.

image

The first chance to launch Parker Solar Probe is 3:33 a.m. EDT on Aug. 11 from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Launch coverage on NASA TV starts at 3 a.m. EDT at nasa.gov/live.

After launch, Parker Solar Probe begins its daring journey to the Sun’s atmosphere, or corona, going closer to the Sun than any spacecraft in history and facing brutal heat and radiation.

Though Parker Solar Probe weighs a mere 1,400 pounds — pretty light for a spacecraft — it’s launching aboard one of the world’s most powerful rockets, a United Launch Alliance Delta IV Heavy with a third stage added.

image

Even though you might think the Sun’s massive means things would just fall into it, it’s surprisingly difficult to actually go there.
Any object leaving Earth starts off traveling at about 67,000 miles per
hour, same as Earth — and most of that is in a sideways direction, so
you have to shed most of that sideways speed to make it to the Sun. All
that means that it takes 55 times more launch energy to go to the Sun
than it does to go to Mars. On top of its powerful launch vehicle,
Parker Solar Probe will use seven Venus gravity assists to shed sideways
speed.

Even though Parker Solar Probe will lose a lot of sideways speed, it’ll still be going incredibly fast as its orbit draws closer to the Sun throughout its seven-year mission. At its fastest, Parker Solar Probe will travel at 430,000 miles per hour — fast enough to get from Philadelphia to Washington, D.C. in one second — setting the record for the fastest spacecraft in history.

image

But the real challenge was to keep the spacecraft from frying once it got there.

We’ve always wanted to send a mission to the corona, but we literally haven’t had the technology that can protect a spacecraft and its instruments from its scorching heat. Only recent advances have enabled engineers to build a heat shield that will protect the spacecraft on this journey of extremes — a tricky feat that requires withstanding the Sun’s intense radiation on the front and staying cool at the back, so the spacecraft and instruments can work properly.

image

The 4.5-inches-thick heat shield is built like a sandwich. There’s a
thin layer of carbon material like you might find in your golf clubs or
tennis rackets, carbon foam, and then another thin piece of
carbon-carbon on the back. Even while the Sun-facing side broils at
2,500 degrees Fahrenheit, the back of the shield will remain a balmy 85
degrees — just above room temperature. There are so few particles in
this region that it’s a vacuum, so blocking the Sun’s radiation goes a
long way towards keeping the spacecraft cool.

Parker Solar Probe is also our first mission to be named after a living individual: Dr. Eugene Parker, famed solar physicist who in 1958 first predicted the existence of the solar wind.

image

“Solar wind” is what Dr. Parker dubbed the stream of charged particles that flows constantly from the Sun, bathing Earth and our entire solar system in the Sun’s magnetic fields. Parker Solar Probe’s flight right through the corona allows it to observe the birth of the very solar wind that Dr. Parker predicted, right as it speeds up and over the speed of sound.  

image

The corona is where solar material is heated to millions of degrees and where the most extreme eruptions on the Sun occur, like solar flares and coronal mass ejections, which fling particles out to space at incredible speeds near the speed of light. These explosions can also spark space weather storms near Earth that can endanger satellites and astronauts, disrupt radio communications and, at their most severe, trigger power outages.

image

Thanks to Parker Solar Probe’s landmark mission, solar scientists will be able to see the objects of their study up close and personal for the very first time.

Up until now, all of our studies of the corona have been remote — that is, taken from a distance, rather than at the mysterious region itself. Scientists have been very creative to glean as much as possible from their remote data, but there’s nothing like actually sending a probe to the corona to see what’s going on.

image

And scientists aren’t the only ones along for the adventure — Parker Solar Probe holds a microchip carrying the names of more than 1.1 million people who signed up to send their name to the Sun. This summer, these names and 1,400 pounds of science equipment begin their journey to the center of our solar system.

Three months later in November 2018, Parker Solar Probe makes its first close approach to the Sun, and in December, it will send back the data. The corona is one of the last places in the solar system where no spacecraft has visited before; each observation Parker Solar Probe makes is a potential discovery.

Stay tuned — Parker Solar Probe is about to take flight.

Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

Spilling the Sun’s Secrets

You might think you know the Sun: It looks quiet and unchanging. But the Sun has secrets that scientists have been trying to figure out for decades.  

One of our new missions — Parker Solar Probe — is aiming to spill the Sun’s secrets and shed new light on our neighbor in the sky.

Even though it’s 93 million miles away, the Sun is our nearest and best laboratory for understanding the inner workings of stars everywhere. We’ve been spying on the Sun with a fleet of satellites for decades, but we’ve never gotten a close-up of our nearest star.

This summer, Parker Solar Probe is launching into an orbit that will take it far closer to the Sun than any instrument has ever gone. It will fly close enough to touch the Sun, sweeping through the outer atmosphere — the corona — 4 million miles above the surface.

This unique viewpoint will do a lot more than provide gossip on the Sun. Scientists will take measurements to help us understand the Sun’s secrets — including those that can affect Earth.

Parker Solar Probe is equipped with four suites of instruments that will take detailed measurements from within the Sun’s corona, all protected by a special heat shield to keep them safe and cool in the Sun’s ferocious heat.

The corona itself is home to one of the Sun’s biggest secrets: The corona’s mysteriously high temperatures. The corona, a region of the Sun’s outer atmosphere, is hundreds of times hotter than the surface below. That’s counterintuitive, like if you got warmer the farther you walked from a campfire, but scientists don’t yet know why that’s the case.

Some think the excess heat is delivered by electromagnetic waves called Alfvén waves moving outwards from the Sun’s surface. Others think it might be due to nanoflares — bomb-like explosions that occur on the Sun’s surface, similar to the flares we can see with telescopes from Earth, but smaller and much more frequent. Either way, Parker Solar Probe’s measurements direct from this region itself should help us pin down what’s really going on.

We also want to find out what exactly accelerates the solar wind — the Sun’s constant outpouring of material that rushes out at a million miles per hour and fills the Solar System far past the orbit of Pluto. The solar wind can cause space weather when it reaches Earth — triggering things like the aurora, satellite problems, and even, in rare cases, power outages.

We know where the solar wind comes from, and that it gains its speed somewhere in the corona, but the exact mechanism of that acceleration is a mystery. By sampling particles directly at the scene of the crime, scientists hope Parker Solar Probe can help crack this case.

Parker Solar Probe should also help us uncover the secrets of some of the fastest particles from the Sun. Solar energetic particles can reach speeds of more than 50% the speed of light, and they can interfere with satellites with little warning because of how fast they move. We don’t know how they get so fast — but it’s another mystery that should be solved with Parker Solar Probe on the case.  

Parker Solar Probe launches summer 2018 on a seven-year mission to touch the Sun. Keep up with the latest on the Sun at @NASASun on Twitter, and follow along with Parker Solar Probe’s last steps to launch at nasa.gov/solarprobe.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Get to Know the 9 Astronauts Set to #LaunchAme…

Our Commercial Crew Program is
working with the American aerospace industry to develop and operate a
new generation of spacecraft to carry astronauts

to and from low-Earth orbit!

As we prepare to launch humans from American soil for the first time since the final space shuttle mission in 2011, get to know the astronauts who will fly with Boeing and SpaceX

as members of our commercial crew!

Bob
Behnken

image

Bob Behnken

served as Chief of the NASA Astronaut Office from July 2012 to July
2015, where he was responsible for flight assignments, mission preparation, on-orbit
support of International Space Station crews and organization of astronaut
office support for future launch vehicles. Learn more about Bob

Eric Boe

image

Eric
Boe first dreamed of being an astronaut at age 5 after his parents woke him up to
watch Neil Armstrong take his first steps onto the lunar surface. Learn more
about Eric
.

 Josh
Cassada 

image

Josh Cassada  holds a Master of Arts Degree and a Doctorate in Physics with a
specialty in high energy particle physics from the University of Rochester, in
Rochester, New York. He was selected as a NASA astronaut in 2013, and his first
spaceflight will be as part of the Commercial Crew Program. Learn more about
Josh
.

Chris Ferguson

image

Chris
Ferguson served as a Navy pilot before becoming a NASA astronaut, and was
commander aboard Atlantis for the final space shuttle flight, as part of the
same crew as Doug Hurley. He retired from NASA in 2011 and has been an integral
part of Boeing’s CST-100 Starliner program. Learn more about Chris

Victor
Glover

image

Victor Glover was selected as a NASA astronaut in 2013 while working as a Legislative Fellow in the United States Senate. His first spaceflight will be as part of the Commercial Crew Program. Learn more about Victor. 

Mike
Hopkins

image

Mike Hopkins

was a top flight test engineer at the United States Air Force Test
Pilot School. He also studied political science at the Università degli Studi
di Parma in Parma, Italy, in 2005, and became a NASA astronaut in 2009. Learn
more about Mike
.

Doug Hurley

image

In
2009, Doug Hurley was one of the record-breaking 13 people living on the space
station at the same time. In 2011, he served as the pilot on Atlantis during the
final space shuttle mission, delivering supplies and spare parts to the
International Space Station. Now, he will be one of the first people to launch
from the U.S. since that last shuttle mission. Learn more about Doug.

Nicole Mann

image

Nicole
Mann is a Naval Aviator and a test pilot in the F/A-18 Hornet. She was selected
as a NASA astronaut in 2013, and her first spaceflight will be as part of the Commercial
Crew Program. Learn more about Nicole.

Suni
Williams 

image

Suni Williams

has completed 7 spacewalks, totaling 50 hours and 40 minutes. She’s
also known for running. In April 2007, Suni ran the first marathon in space,
the Boston Marathon, in 4 hours and 24 minutes. Learn more about Suni.

Boeing and SpaceX are scheduled to complete their crew flight tests in mid-2019 and April 2019, respectively. Once enabled, commercial transportation to and from the
International Space Station will empower more station use, more research time and more
opportunities to understand and overcome the challenges of living in space, which is critical for us to create a sustainable
presence on the Moon and carry out missions deeper into the solar system, including Mars! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.