Category: science

[Updated!] First Product from NASA Fanboy: Ast…

[Updated!] First Product from NASA Fanboy: Astro art prints!:

Updated: I’ve struck a better deal for the printing process and am thrilled to offer a drastically reduced price on this 24"x36" print! I’ve been wanting to do this for quite some time, and am thrilled to finally introduce the first canvas print from Keep Looking Up. I’m working with some incredible craftsmen to create this limited edition run of 24"x36" canvas prints of the iconic Earthrise image from the Apollo 8 mission. I’m looking forward to offering more images in the future and having a full site dedicated to the prints. Check it out, and Keep Looking Up!

Solar System 10 Things: Looking Back at Pluto

In July 2015, we saw Pluto up close for the first time and—after three years of intense study—the surprises keep coming. “It’s clear,” says Jeffery Moore, New Horizons’ geology team lead, “Pluto is one of the most amazing and complex objects in our solar system.”

1. An Improving View

image

These are combined observations of Pluto over the course of several decades. The first frame is a digital zoom-in on Pluto as it appeared upon its discovery by Clyde Tombaugh in 1930. More frames show of Pluto as seen by the Hubble Space Telescope. The final sequence zooms in to a close-up frame of Pluto taken by our New Horizons spacecraft on July 14, 2015.

2. The Heart

image

Pluto’s surface sports a remarkable range of subtle colors are enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Zoom in on the full resolution image on a larger screen to fully appreciate the complexity of Pluto’s surface features.

3. The Smiles

image

July 14, 2015: New Horizons team members Cristina Dalle Ore, Alissa Earle and Rick Binzel react to seeing the spacecraft’s last and sharpest image of Pluto before closest approach.

4. Majestic Mountains

Just 15 minutes after its closest approach to Pluto, the New Horizons spacecraft captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous atmosphere. The image was taken from a distance of 11,000 miles (18,000 kilometers) to Pluto; the scene is 780 miles (1,250 kilometers) wide.

5. Icy Dunes

image

Found near the mountains that encircle Pluto’s Sputnik Planitia plain, newly discovered ridges appear to have formed out of particles of methane ice as small as grains of sand, arranged into dunes by wind from the nearby mountains.

6. Glacial Plains

image

The vast nitrogen ice plains of Pluto’s Sputnik Planitia – the western half of Pluto’s “heart”—continue to give up secrets. Scientists processed images of Sputnik Planitia to bring out intricate, never-before-seen patterns in the surface textures of these glacial plains.

7. Colorful and Violent Charon

image

High resolution images of Pluto’s largest moon, Charon, show a surprisingly complex and violent history. Scientists expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more.

8. Ice Volcanoes

image

One of two potential cryovolcanoes spotted on the surface of Pluto by the New Horizons spacecraft. This feature, known as Wright Mons, was informally named by the New Horizons team in honor of the Wright brothers. At about 90 miles (150 kilometers) across and 2.5 miles (4 kilometers) high, this feature is enormous. If it is in fact an ice volcano, as suspected, it would be the largest such feature discovered in the outer solar system.

9. Blue Rays

Pluto’s receding crescent as seen by New Horizons at a distance of 120,000 miles (200,000 kilometers). Scientists believe the spectacular blue haze is a photochemical smog resulting from the action of sunlight on methane and other molecules in Pluto’s atmosphere. These hydrocarbons accumulate into small haze particles, which scatter blue sunlight—the same process that can make haze appear bluish on Earth.

10. Encore

image

On Jan. 1, 2019, New Horizons will fly past a small Kuiper Belt Object named MU69 (nicknamed Ultima Thule)—a billion miles (1.5 billion kilometers) beyond Pluto and more than four billion miles (6.5 billion kilometers) from Earth. It will be the most distant encounter of an object in history—so far—and the second time New Horizons has revealed never-before-seen landscapes.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

[Updated!] First Product from NASA Fanboy: Ast…

[Updated!] First Product from NASA Fanboy: Astro art prints!:

Updated: I’ve struck a better deal for the printing process and am thrilled to offer a drastically reduced price on this 24"x36" print! I’ve been wanting to do this for quite some time, and am thrilled to finally introduce the first canvas print from Keep Looking Up. I’m working with some incredible craftsmen to create this limited edition run of 24"x36" canvas prints of the iconic Earthrise image from the Apollo 8 mission. I’m looking forward to offering more images in the future and having a full site dedicated to the prints. Check it out, and Keep Looking Up!

[Updated!] First Product from NASA Fanboy: Ast…

[Updated!] First Product from NASA Fanboy: Astro art prints!:

Updated: I’ve struck a better deal for the printing process and am thrilled to offer a drastically reduced price on this 24"x36" print! I’ve been wanting to do this for quite some time, and am thrilled to finally introduce the first canvas print from Keep Looking Up. I’m working with some incredible craftsmen to create this limited edition run of 24"x36" canvas prints of the iconic Earthrise image from the Apollo 8 mission. I’m looking forward to offering more images in the future and having a full site dedicated to the prints. Check it out, and Keep Looking Up!

[Updated!] First Product from NASA Fanboy: Ast…

[Updated!] First Product from NASA Fanboy: Astro art prints!:

Updated: I’ve struck a better deal for the printing process and am thrilled to offer a drastically reduced price on this 24"x36" print! I’ve been wanting to do this for quite some time, and am thrilled to finally introduce the first canvas print from Keep Looking Up. I’m working with some incredible craftsmen to create this limited edition run of 24"x36" canvas prints of the iconic Earthrise image from the Apollo 8 mission. I’m looking forward to offering more images in the future and having a full site dedicated to the prints. Check it out, and Keep Looking Up!

[Updated!] First Product from NASA Fanboy: Ast…

[Updated!] First Product from NASA Fanboy: Astro art prints!:

Updated: I’ve struck a better deal for the printing process and am thrilled to offer a drastically reduced price on this 24"x36" print! I’ve been wanting to do this for quite some time, and am thrilled to finally introduce the first canvas print from Keep Looking Up. I’m working with some incredible craftsmen to create this limited edition run of 24"x36" canvas prints of the iconic Earthrise image from the Apollo 8 mission. I’m looking forward to offering more images in the future and having a full site dedicated to the prints. Check it out, and Keep Looking Up!

Chemical Space Gardens

You know that colorful crystal garden you grew as a kid?

Yeah, we do that in space now. 

Chemical Gardens, a new investigation aboard the International Space Station takes a classic science experiment to space with the hope of improving our understanding of gravity’s impact on their structural formation.

image

Here on Earth, chemical gardens are most often used to teach students about things like chemical reactions.

image

Chemical gardens form when dissolvable metal salts are placed in an aqueous solution containing anions such as silicate, borate, phosphate, or carbonate.

image

Delivered to the space station aboard SpaceX’S CRS-15 cargo mission, the samples for this experiment will be processed by crew members and grown throughout Expedition 56 before returning to Earth.

image

Results from this investigation could provide a better understanding of cement science and improvements to biomaterial devices used for scaffolding, for use both in space and on Earth. 

Follow the growth of the chemical garden and the hundreds of other investigations constantly orbiting above you by following @ISS_Research on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Using All of Our Senses in Space

Today, we and the National Science Foundation (NSF) announced the detection of light and a high-energy cosmic particle that both came from near a black hole billions of trillions of miles from Earth. This discovery is a big step forward in the field of multimessenger astronomy.

But wait — what is multimessenger astronomy? And why is it a big deal?

People learn about different objects through their senses: sight, touch, taste, hearing and smell. Similarly, multimessenger astronomy allows us to study the same astronomical object or event through a variety of “messengers,” which include light of all wavelengths, cosmic ray particles, gravitational waves, and neutrinos — speedy tiny particles that weigh almost nothing and rarely interact with anything. By receiving and combining different pieces of information from these different messengers, we can learn much more about these objects and events than we would from just one.

image

Lights, Detector, Action!  

Much of what we know about the universe comes just from different wavelengths of light. We study the rotations of galaxies through radio waves and visible light, investigate the eating habits of black holes through X-rays and gamma rays, and peer into dusty star-forming regions through infrared light.

image

The Fermi Gamma-ray Space Telescope, which recently turned 10, studies the universe by detecting gamma rays — the highest-energy form of light. This allows us to investigate some of the most extreme objects in the universe.

image

Last fall, Fermi was involved in another multimessenger finding — the very first detection of light and gravitational waves from the same source, two merging neutron stars. In that instance, light and gravitational waves were the messengers that gave us a better understanding of the neutron stars and their explosive merger into a black hole.

image

Fermi has also advanced our understanding of blazars, which are galaxies with supermassive black holes at their centers. Black holes are famous for drawing material into them. But with blazars, some material near the black hole shoots outward in a pair of fast-moving jets. With blazars, one of those jets points directly at us!

Multimessenger Astronomy is Cool

image

Today’s announcement combines another pair of messengers. The IceCube Neutrino Observatory lies a mile under the ice in Antarctica and uses the ice itself to detect neutrinos. When IceCube caught a super-high-energy neutrino and traced its origin to a specific area of the sky, they alerted the astronomical community.

Fermi completes a scan of the entire sky about every three hours, monitoring thousands of blazars among all the bright gamma-ray sources it sees. For months it had observed a blazar producing more gamma rays than usual. Flaring is a common characteristic in blazars, so this did not attract special attention. But when the alert from IceCube came through about a neutrino coming from that same patch of sky, and the Fermi data were analyzed, this flare became a big deal!

image

IceCube, Fermi, and followup observations all link this neutrino to a blazar called TXS 0506+056. This event connects a neutrino to a supermassive black hole for the very first time.  

image

Why is this such a big deal? And why haven’t we done it before? Detecting a neutrino is hard since it doesn’t interact easily with matter and can travel unaffected great distances through the universe. Neutrinos are passing through you right now and you can’t even feel a thing!

The neat thing about this discovery — and multimessenger astronomy in general — is how much more we can learn by combining observations. This blazar/neutrino connection, for example, tells us that it was protons being accelerated by the blazar’s jet. Our study of blazars, neutrinos, and other objects and events in the universe will continue with many more exciting multimessenger discoveries to come in the future.

Want to know more? Read the story HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

[Updated!] First Product from NASA Fanboy: Ast…

[Updated!] First Product from NASA Fanboy: Astro art prints!:

Updated: I’ve struck a better deal for the printing process and am thrilled to offer a drastically reduced price on this 24"x36" print! I’ve been wanting to do this for quite some time, and am thrilled to finally introduce the first canvas print from Keep Looking Up. I’m working with some incredible craftsmen to create this limited edition run of 24"x36" canvas prints of the iconic Earthrise image from the Apollo 8 mission. I’m looking forward to offering more images in the future and having a full site dedicated to the prints. Check it out, and Keep Looking Up!

6 Fun Facts About Our New Hexapod Robot

Satellites are crucial to everyday life and cost hundreds of millions of dollars to manufacture and launch. Currently, they are simply decommissioned when they run out of fuel. There is a better way, and it centers on satellite servicing, which can make spaceflight more sustainable, affordable, and resilient. Our satellite servicing technologies will open up a new world where fleet managers can call on robotic mechanics to diagnose, maintain and extend the lifespan of their assets.

Our new and unique robot is designed to test robotic satellite servicing capabilities. Standing 10 feet tall and 16 feet wide, the six-legged “hexapod” robot helps engineers perfect technologies before they’re put to use in space.

Here are SIX interesting facts about the hexapod:

1. The hexapod has six degrees of freedom. 

image

This essentially means the robot can move in six directions—three translational directions (forward and backward, up and down and left and right), and three rotational directions (roll, pitch and yaw). Because of its wide range of movement, the hexapod mimics the way a satellite moves in zero gravity.

2. It can move up to eight inches per second and can extend up to 13 feet (but usually doesn’t).

image

Like most space simulators, the hexapod typically moves slowly at about one inch per second. During tests, it remains positioned about nine feet off the floor to line up with and interact with a robotic servicing arm mounted to an arch nearby. However, the robot can move at speeds up to eight inches per second and extend/reach nearly 13 feet high!

3. The hexapod tests mission elements without humans.

image

The hexapod is crucial to testing for our Restore-L project, which will prove a combination of technologies needed to robotically refuel a satellite not originally designed to be refueled in space.

Perhaps the most difficult part of refueling a satellite in space is the autonomous rendezvous and grapple stage. A satellite in need of fuel might be moving 16,500 miles per hour in the darkness of space. A servicer satellite will need to match its speed and approach the client satellite, then grab it. This nail-biting stage needs to be done autonomously by the spacecraft’s systems (no humans controlling operations from the ground).

The hexapod helps us practice this never-before-attempted feat in space-like conditions. Eventually a suite of satellite servicing capabilities could be incorporated in other missions.

4. This type of robot is also used for flight and roller coaster simulators.

image

Because of the hexapod’s unparalleled* ability to handle a high load capacity and range of movement, while maintaining a high degree of precision and repeatability, a similar kind of robot is used for flight and roller coaster simulators.

*Pun intended: the hexapod is what is referred to as a parallel motion robot

5. The hexapod was designed and made in the U S of A.

image

The hexapod was designed and built by a small, New Hampshire-based company called Mikrolar. Mikrolar designs and produces custom robots that offer a wide range of motion and high degree of precision, for a wide variety of applications.

6. The robot lives at our Goddard Space Flight Center’s Robotic Operations Center.

image

The hexapod conducts crucial tests at our Goddard Space Flight Center’s Robotic Operations Center (ROC). The ROC is a 5,000-square-foot facility with 50 feet high ceilings. It acts as an incubator for satellite servicing technologies. Within its black curtain-lined walls, space systems, components and tasks are put to the test in simulated environments, refined and finally declared ready for action in orbit.

The hexapod is not alone in the ROC. Five other robots test satellite servicing capabilities. Engineers use these robots to practice robotic repairs on satellites rendezvousing with objects in space. 

Watch the hexapod in action HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com