Category: saturn

Photo

Photo

What’s Up – April 2018

What’s Up For April? 

The Moon, Mars and Saturn and the Lyrid meteor shower!

image

The Moon, Mars and Saturn

The Moon, Mars and Saturn form a pretty triangle in early April, the Lyrid Meteors are visible in late April, peaking high overhead on the 22nd.

image

You won’t want to miss red Mars and golden Saturn in the south-southeast morning skies this month. Mars shines a little brighter than last month.

image

By the 7th, the Moon joins the pair. From a dark sky you may see some glow from the nearby Milky Way.

Lyrid Meteors

image

Midmonth, start looking for Lyrid meteors, which are active from April 14 through the 30th. They peak on the 22nd.

The Lyrids are one of the oldest known meteor showers and have been observed for 2,700 years. The first recorded sighting of a Lyrid meteor shower goes back to 687 BC by the Chinese. The pieces of space debris that interact with our atmosphere to create the Lyrids originate from comet C/1861 G1 Thatcher. Comet Thatcher was discovered on 5 April 1861 by A. E. Thatcher.

image

In the early morning sky, a patient observer will see up to more than a dozen meteors per hour in this medium-strength shower, with 18 meteors per hour calculated for the peak. U.S. observers should see good rates on the nights before and after this peak.

image

A bright first quarter moon plays havoc with sky conditions, marring most of the typically faint Lyrid meteors. But Lyra will be high overhead after the moon sets at midnight, so that’s the best time to look for Lyrids.

Jupiter & Juno

Jupiter will also be visible in the night sky this month! 

image

Through a telescope, Jupiter’s clouds belts and zones are easy to see. 

image

And watch the Great Red Spot transit–or cross–the visible (Earth-facing) disk of Jupiter every 8 hours.

image

Our Juno spacecraft continues to orbit this gas giant, too!

image

And Juno’s JunoCam citizen science team is creating exciting images of Jupiter’s features based on the latest spacecraft data.

Next month Jupiter is at opposition–when it rises at sunset, sets at sunrise, and offers great views for several months!

Watch the full What’s Up for April Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   

Solar System: 10 Things to Know This Week

2—Four Hundred Elephants…The Saturn V rocket stood about the height of a 36-story-tall building, and 60 feet (18 meters) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds (2.8 million kilograms), or the weight of about 400 elephants.Rockets We Love-Saturn V

Fifty years ago, with President Kennedy’s Moon landing deadline looming, the powerful Saturn V had to perform. And perform it did—hurling 24 humans to the Moon.

image

The race to land astronauts on the Moon was getting tense 50 years ago this week. Apollo 6, the final uncrewed test flight of America’s powerful Moon rocket, launched on April 4, 1968. Several technical issues made for a less-than-perfect launch, but the test flight nonetheless convinced NASA managers that the rocket was up to the task of carrying humans. Less than two years remained to achieve President John F. Kennedy’s goal to put humans on the Moon before the decade was out, meaning the Saturn V rocket had to perform.

1—“The only chance to get to the Moon before the end of 1969.”

image

After the April 1968 Apollo 6 test flight (pictured above), the words of Deke Slayton (one of the original Mercury 7 astronauts) and intense competition with a rival team in the Soviet Union propelled a 12-member panel to unanimously vote for a Christmas 1968 crewed mission to orbit the Moon.

2—Four Hundred Elephants…

image

The Saturn V rocket stood about the height of a 36-story-tall building, and 60 feet (18 meters) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds (2.8 million kilograms), or the weight of about 400 elephants.

3—…and Busloads of Thrust

image

Stand back, Ms. Frizzle. The Saturn V generated 7.6 million pounds (34.5 million newtons) of thrust at launch, creating more power than 85 Hoover Dams. It could launch about 130 tons (118,000 kilograms) into Earth orbit. That’s about as much weight as 10 school buses. The Saturn V could launch about 50 tons (43,500 kilograms) to the Moon. That’s about the same as four school buses.

4—Christmas at the Moon

image

On Christmas Eve 1968, the Saturn V delivered on engineers’ promises by hurling Frank Borman, Jim Lovell and Bill Anders into lunar orbit. The trio became the first human beings to orbit another world. The Apollo 8 crew broadcast a special holiday greeting from lunar orbit and also snapped the iconic earthrise image of our home planet rising over the lunar landscape.

5—Gumdrop and Spider

image

The crew of Apollo 9 proved that they could pull the lunar module out of the top of the Saturn V’s third stage and maneuver it in space (in this case high above Earth). The crew named their command module “Gumdrop.” The Lunar Module was named “Spider.”

6—The Whole Enchilada

image

Saturn-V AS-505 provided the ride for the second dry run to the Moon in 1969. Tom Stafford, Gene Cernan and John Young rode Command Module “Charlie Brown” to lunar orbit and then took Lunar Module “Snoopy” on a test run in lunar orbit. Apollo 10 did everything but land on the Moon, setting the stage for the main event a few months later. Young and Cernan returned to walk on the Moon aboard Apollo 16 and 17 respectively. Cernan, who died in 2017, was the last human being (so far) to set foot on the Moon.

7—The Main Event

image

The launch of Apollo 11—the first mission to land humans on the Moon—provided another iconic visual as Saturn-V AS-506 roared to life on Launch Pad 39A at Kennedy Space Center in Florida. Three days later, Neil Armstrong and Buzz Aldrin made the first of many bootprints in the lunar dust (supported from orbit by Michael Collins).

8—Moon Men

image

Saturn V rockets carried 24 humans to the Moon, and 12 of them walked on its surface between 1969 and 1972. Thirteen are still alive today. The youngest, all in their early 80s, are moonwalkers Charles Duke (Apollo 16) and Harrison Schmitt (Apollo 17) and Command Module Pilot Ken Mattingly (Apollo 16, and also one of the heroes who helped rescue Apollo 13). There is no single image of all the humans who have visited the Moon.

9—The Flexible Saturn V

The Saturn V’s swan song was to lay the groundwork for establishing a permanent human presence in space. Skylab, launched into Earth orbit in 1973, was America’s first space station, a precursor to the current International Space Station. Skylab’s ride to orbit was a Saturn IV-B 3rd stage, launched by a Saturn 1-C and SII Saturn V stages.

This was the last launch of a Saturn V, but you can still see the three remaining giant rockets at the visitor centers at Johnson Space Center in Texas and Kennedy Space Center in Florida and at the United States Space and Rocket Center in Alabama (near Marshall Space Flight Center, one of the birthplaces of the Saturn V).

10—The Next Generation

The Saturn V was retired in 1973. Work is now underway on a fleet of rockets. We are planning an uncrewed flight test of Space Launch System (SLS) rocket to travel beyond the Moon called Exploration Mission-1 (EM-1). “This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington.

Read the web version of this 10 Things to Know article HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Solar System: 10 Things to Know This Week

Pioneer Days

Someone’s got to be first. In space, the first explorers beyond Mars were Pioneers 10 and 11, twin robots who charted the course to the cosmos.

image

1-Before Voyager

image

Voyager, with its outer solar system tour and interstellar observations, is often credited as the greatest robotic space mission. But today we remember the plucky Pioneers, the spacecraft that proved Voyager’s epic mission was possible.

2-Where No One Had Gone Before

image

Forty-five years ago this week, scientists still weren’t sure how hard it would be to navigate the main asteroid belt, a massive field of rocky debris between Mars and Jupiter. Pioneer 10 helped them work that out, emerging from first the first six-month crossing in February 1973. Pioneer 10 logged a few meteoroid hits (fewer than expected) and taught engineers new tricks for navigating farther and farther beyond Earth.

3-Trailblazer No. 2

image

Pioneer 11 was a backup spacecraft launched in 1973 after Pioneer 10 cleared the asteroid belt. The new mission provided a second close look at Jupiter, the first close-up views of Saturn and also gave Voyager engineers plotting an epic multi-planet tour of the outer planets a chance to practice the art of interplanetary navigation.

4-First to Jupiter

image

Three-hundred and sixty-three years after humankind first looked at Jupiter through a telescope, Pioneer 10 became the first human-made visitor to the Jovian system in December 1973. The spacecraft spacecraft snapped about 300 photos during a flyby that brought it within 81,000 miles (about 130,000 kilometers) of the giant planet’s cloud tops.

5-Pioneer Family

image

Pioneer began as a Moon program in the 1950s and evolved into increasingly more complicated spacecraft, including a Pioneer Venus mission that delivered a series of probes to explore deep into the mysterious toxic clouds of Venus. A family portrait (above) showing (from left to right) Pioneers 6-9, 10 and 11 and the Pioneer Venus Orbiter and Multiprobe series. Image date: March 11, 1982. 

6-A Pioneer and a Pioneer

image

Classic rock has Van Halen, we have Van Allen. With credits from Explorer 1 to Pioneer 11, James Van Allen was a rock star in the emerging world of planetary exploration. Van Allen (1914-2006) is credited with the first scientific discovery in outer space and was a fixture in the Pioneer program. Van Allen was a key part of the team from the early attempts to explore the Moon (he’s pictured here with Pioneer 4) to the more evolved science platforms aboard Pioneers 10 and 11.

7-The Farthest…For a While

image

For more than 25 years, Pioneer 10 was the most distant human-made object, breaking records by crossing the asteroid belt, the orbit of Jupiter and eventually even the orbit of Pluto. Voyager 1, moving even faster, claimed the most distant title in February 1998 and still holds that crown.

8-Last Contact

image

We last heard from Pioneer 10 on Jan. 23, 2003. Engineers felt its power source was depleted and no further contact should be expected. We tried again in 2006, but had no luck. The last transmission from Pioneer 11 was received in September 1995. Both missions were planned to last about two years.

9-Galactic Ghost Ships

image

Pioneers 10 and 11 are two of five spacecraft with sufficient velocity to escape our solar system and travel into interstellar space. The other three—Voyagers 1 and 2 and New Horizons—are still actively talking to Earth. The twin Pioneers are now silent. Pioneer 10 is heading generally for the red star Aldebaran, which forms the eye of Taurus (The Bull). It will take Pioneer over 2 million years to reach it. Pioneer 11 is headed toward the constellation of Aquila (The Eagle) and will pass nearby in about 4 million years.

10-The Original Message to the Cosmos

image

Years before Voyager’s famed Golden Record, Pioneers 10 and 11 carried the original message from Earth to the cosmos. Like Voyager’s record, the Pioneer plaque was the brainchild of Carl Sagan who wanted any alien civilization who might encounter the craft to know who made it and how to contact them. The plaques give our location in the galaxy and depicts a man and woman drawn in relation to the spacecraft.

Read the full version of this week’s 10 Things article HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Solar System: 10 Things to Know This Week

January 8: Images for Your Computer or Phone Wallpaper

Need some fresh perspective? Here are 10 vision-stretching images for your computer desktop or phone wallpaper. These are all real pictures, sent recently by our planetary missions throughout the solar system. You’ll find more of our images at solarsystem.nasa.gov/galleries, images.nasa.gov and www.jpl.nasa.gov/spaceimages.

Applying Wallpaper:
1. Click on the screen resolution you would like to use.
2. Right-click on the image (control-click on a Mac) and select the option ‘Set the Background’ or ‘Set as Wallpaper’ (or similar).

1. The Fault in Our Mars

image

This image from our Mars Reconnaissance Orbiter (MRO) of northern Meridiani Planum shows faults that have disrupted layered deposits. Some of the faults produced a clean break along the layers, displacing and offsetting individual beds.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

2. Jupiter Blues

image

Our Juno spacecraft captured this image when the spacecraft was only 11,747 miles (18,906 kilometers) from the tops of Jupiter’s clouds – that’s roughly as far as the distance between New York City and Perth, Australia. The color-enhanced image, which captures a cloud system in Jupiter’s northern hemisphere, was taken on Oct. 24, 2017, when Juno was at a latitude of 57.57 degrees (nearly three-fifths of the way from Jupiter’s equator to its north pole) and performing its ninth close flyby of the gas giant planet.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

3. A Farewell to Saturn

image

After more than 13 years at Saturn, and with its fate sealed, our Cassini spacecraft bid farewell to the Saturnian system by firing the shutters of its wide-angle camera and capturing this last, full mosaic of Saturn and its rings two days before the spacecraft’s dramatic plunge into the planet’s atmosphere on Sept. 15, 2017.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

4. All Aglow

image

Saturn’s moon Enceladus drifts before the rings, which glow brightly in the sunlight. Beneath its icy exterior shell, Enceladus hides a global ocean of liquid water. Just visible at the moon’s south pole (at bottom here) is the plume of water ice particles and other material that constantly spews from that ocean via fractures in the ice. The bright speck to the right of Enceladus is a distant star. This image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 6, 2011.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

5. Rare Encircling Filament

image

Our Solar Dynamics Observatory came across an oddity this week that the spacecraft has rarely observed before: a dark filament encircling an active region (Oct. 29-31, 2017). Solar filaments are clouds of charged particles that float above the Sun, tethered to it by magnetic forces. They are usually elongated and uneven strands. Only a handful of times before have we seen one shaped like a circle. (The black area to the left of the brighter active region is a coronal hole, a magnetically open region of the Sun).

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334 

6. Jupiter’s Stunning Southern Hemisphere

image

See Jupiter’s southern hemisphere in beautiful detail in this image taken by our Juno spacecraft. The color-enhanced view captures one of the white ovals in the “String of Pearls,” one of eight massive rotating storms at 40 degrees south latitude on the gas giant planet. The image was taken on Oct. 24, 2017, as Juno performed its ninth close flyby of Jupiter. At the time the image was taken, the spacecraft was 20,577 miles (33,115 kilometers) from the tops of the clouds of the planet.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

7. Saturn’s Rings: View from Beneath

image

Our Cassini spacecraft obtained this panoramic view of Saturn’s rings on Sept. 9, 2017, just minutes after it passed through the ring plane. The view looks upward at the southern face of the rings from a vantage point above Saturn’s southern hemisphere.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

8. From Hot to Hottest

image

This sequence of images from our Solar Dynamics Observatory shows the Sun from its surface to its upper atmosphere all taken at about the same time (Oct. 27, 2017). The first shows the surface of the sun in filtered white light; the other seven images were taken in different wavelengths of extreme ultraviolet light. Note that each wavelength reveals somewhat different features. They are shown in order of temperature, from the first one at about 11,000 degrees Fahrenheit (6,000 degrees Celsius) on the surface, out to about 10 million degrees in the upper atmosphere. Yes, the sun’s outer atmosphere is much, much hotter than the surface. Scientists are getting closer to solving the processes that generate this phenomenon.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

9. High Resolution View of Ceres

image

This orthographic projection shows dwarf planet Ceres as seen by our Dawn spacecraft. The projection is centered on Occator Crater, home to the brightest area on Ceres. Occator is centered at 20 degrees north latitude, 239 degrees east longitude.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334 

10. In the Chasm

image

This image from our Mars Reconnaissance Orbiter shows a small portion of the floor of Coprates Chasma, a large trough within the Valles Marineris system of canyons. Although the exact sequence of events that formed Coprates Chasma is unknown, the ripples, mesas, and craters visible throughout the terrain point to a complex history involving multiple mechanisms of erosion and deposition. The main trough of Coprates Chasma ranges from 37 miles (60 kilometers) to 62 miles (100 kilometers) in width.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

Explore and learn more about our solar system at: solarsystem.nasa.gov/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Finalists for a Future Mission to Explore the …

We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.

What are they?

In no particular order…

CAESAR

image

CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.

image

This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth. 

image

Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth’s oceans, and of life.

Dragonfly

A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.

image

Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.

image

Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan’s organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.

What’s Next?

The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.

image

That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu. 

Key Technologies

We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.

image

The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.

image

The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.

The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

Solar System: 10 Things to Know This Week

Need some space? 

Here are 10 perspective-building images for your computer desktop and mobile device wallpaper. 

These are all real images, sent very recently by our planetary missions throughout the solar system. 

1. Our Sun

image

Warm up with this view from our Solar Dynamics Observatory showing active regions on the Sun in October 2017. They were observed in a wavelength of extreme ultraviolet light that reveals plasma heated to over a million degrees. 

Downloads 
Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

2. Jupiter Up-Close

image

This series of enhanced-color images shows Jupiter up close and personal, as our Juno spacecraft performed its eighth flyby of the gas giant planet on Sept. 1, 2017. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560  | 1080 x 1920 | 750 x 1334

3. Saturn’s and Its Rings

image

With this mosaic from Oct. 28, 2016, our Cassini spacecraft captured one of its last looks at Saturn and its main rings from a distance. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

4. Gale Crater on Mars

image

This look from our Curiosity Mars rover includes several geological layers in Gale crater to be examined by the mission, as well as the higher reaches of Mount Sharp beyond. The redder rocks of the foreground are part of the Murray formation. Pale gray rocks in the middle distance of the right half of the image are in the Clay Unit. A band between those terrains is “Vera Rubin Ridge,” where the rover is working currently. The view combines six images taken with the rover’s Mast Camera (Mastcam) on Jan. 24, 2017. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

5. Sliver of Saturn

image

Cassini peers toward a sliver of Saturn’s sunlit atmosphere while the icy rings stretch across the foreground as a dark band on March 31, 2017. This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

6. Dwarf Planet Ceres 

image

This image of the limb of dwarf planet Ceres shows a section of the northern hemisphere, as seen by our Dawn mission. Prominently featured is Occator Crater, home of Ceres’ intriguing “bright spots.” The latest research suggests that the bright material in this crater is comprised of salts left behind after a briny liquid emerged from below. 

Downloads 
Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

7. Martian Crater

image

This image from our Mars Reconnaissance Orbiter (MRO) shows a crater in the region with the most impressive known gully activity in Mars’ northern hemisphere. Gullies are active in the winter due to carbon dioxide frost, but northern winters are shorter and warmer than southern winters, so there is less frost and less gully activity. 

Downloads 
Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

8. Dynamic Storm on Jupiter

image

A dynamic storm at the southern edge of Jupiter’s northern polar region dominates this Jovian cloudscape, courtesy of Juno. This storm is a long-lived anticyclonic oval named North North Temperate Little Red Spot 1. Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

9. Rings Beyond Saturn’s Sunlit Horizon 

image

This false-color view from the Cassini spacecraft gazes toward the rings beyond Saturn’s sunlit horizon. Along the limb (the planet’s edge) at left can be seen a thin, detached haze. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334 

10. Saturn’s Ocean-Bearing Moon Enceladus

image

Saturn’s active, ocean-bearing moon Enceladus sinks behind the giant planet in a farewell portrait from Cassini. This view of Enceladus was taken by NASA’s Cassini spacecraft on Sept. 13, 2017. It is among the last images Cassini sent back before its mission came to an end on Sept. 15, after nearly 20 years in space. 

Downloads
Desktop: 
1280 x 800 | 1600 x 1200 | 1920 x 1200
Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

Applying Wallpaper:
1. Click on the screen resolution you would like to use.
2. Right-click on the image (control-click on a Mac) and select the option ‘Set the Background’ or ‘Set as Wallpaper’ (or similar).

Places to look for more of our pictures include solarsystem.nasa.gov/galleries, images.nasa.gov and www.jpl.nasa.gov/spaceimages.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Cassini Mission: What’s Next?

It’s Friday, Sept. 15 and our Cassini mission has officially come to a spectacular end. The final signal from the spacecraft was received here on Earth at 7:55 a.m. EDT after a fateful plunge into Saturn’s atmosphere.

image

After losing contact with Earth, the spacecraft burned up like a meteor, becoming part of the planet itself.

image

Although bittersweet, Cassini’s triumphant end is the culmination of a nearly 20-year mission that overflowed with discoveries.

But, what happens now?

Mission Team and Data

Now that the spacecraft is gone, most of the team’s engineers are migrating to other planetary missions, where they will continue to contribute to the work we’re doing to explore our solar system and beyond.

image

Mission scientists will keep working for the coming years to ensure that we fully understand all of the data acquired during the mission’s Grand Finale. They will carefully calibrate and study all of this data so that it can be entered into the Planetary Data System. From there, it will be accessible to future scientists for years to come.

image

Even beyond that, the science data will continue to be worked on for decades, possibly more, depending on the research grants that are acquired.

Other team members, some who have spent most of their career working on the Cassini mission, will use this as an opportunity to retire.

Future Missions

In revealing that Enceladus has essentially all the ingredients needed for life, the mission energized a pivot to the exploration of “ocean worlds” that has been sweeping planetary science over the past couple of decades.

image

Jupiter’s moon Europa has been a prime target for future exploration, and many lessons during Cassini’s mission are being applied in planning our Europa Clipper mission, planned for launch in the 2020s.

image

The mission will orbit the giant planet, Jupiter, using gravitational assists from large moons to maneuver the spacecraft into repeated close encounters, much as Cassini has used the gravity of Titan to continually shape the spacecraft’s course.

In addition, many engineers and scientists from Cassini are serving on the new Europa Clipper mission and helping to shape its science investigations. For example, several members of the Cassini Ion and Neutral Mass Spectrometer team are developing an extremely sensitive, next-generation version of their instrument for flight on Europa Clipper. What Cassini has learned about flying through the plume of material spraying from Enceladus will be invaluable to Europa Clipper, should plume activity be confirmed on Europa.

image

In the decades following Cassini, scientists hope to return to the Saturn system to follow up on the mission’s many discoveries. Mission concepts under consideration include robotic explorers to drift on the methane seas of Titan and fly through the Enceladus plume to collect and analyze samples for signs of biology.

image

Atmospheric probes to all four of the outer planets have long been a priority for the science community, and the most recent recommendations from a group of planetary scientists shows interest in sending such a mission to Saturn. By directly sampling Saturn’s upper atmosphere during its last orbits and final plunge, Cassini is laying the groundwork for an potential Saturn atmospheric probe.

image

A variety of potential mission concepts are discussed in a recently completed study — including orbiters, flybys and probes that would dive into Uranus’ atmosphere to study its composition. Future missions to the ice giants might explore those worlds using an approach similar to Cassini’s mission.

Learn more about the Cassini mission and its Grand Finale HERE.

Follow the mission on Facebook and Twitter for the latest updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Cassini Spacecraft: Top Discoveries

Our Cassini spacecraft has been exploring Saturn, its stunning rings and its strange and beautiful moons for more than a decade.

image

Having expended almost every bit of the rocket propellant it carried to Saturn, operators are deliberately plunging Cassini into the planet to ensure Saturn’s moons will remain pristine for future exploration – in particular, the ice-covered, ocean-bearing moon Enceladus, but also Titan, with its intriguing pre-biotic chemistry.

Let’s take a look back at some of Cassini’s top discoveries:  

Titan

image

Under its shroud of haze, Saturn’s planet-sized moon Titan hides dunes, mountains of water ice and rivers and seas of liquid methane. Of the hundreds of moons in our solar system, Titan is the only one with a dense atmosphere and large liquid reservoirs on its surface, making it in some ways more like a terrestrial planet.

image

Both Earth and Titan have nitrogen-dominated atmospheres – over 95% nitrogen in Titan’s case. However, unlike Earth, Titan has very little oxygen; the rest of the atmosphere is mostly methane and traced amounts of other gases, including ethane.

image

There are three large seas, all located close to the moon’s north pole, surrounded by numerous smaller lakes in the northern hemisphere. Just one large lake has been found in the southern hemisphere.

Enceladus

image

The moon Enceladus conceals a global ocean of salty liquid water beneath its icy surface. Some of that water even shoots out into space, creating an immense plume!

image

For decades, scientists didn’t know why Enceladus was the brightest world in the solar system, or how it related to Saturn’s E ring. Cassini found that both the fresh coating on its surface, and icy material in the E ring originate from vents connected to a global subsurface saltwater ocean that might host hydrothermal vents.

image

With its global ocean, unique chemistry and internal heat, Enceladus has become a promising lead in our search for worlds where life could exist.

Iapetus

image

Saturn’s two-toned moon Iapetus gets its odd coloring from reddish dust in its orbital path that is swept up and lands on the leading face of the moon.

image

The most unique, and perhaps most remarkable feature discovered on Iapetus in Cassini images is a topographic ridge that coincides almost exactly with the geographic equator. The physical origin of the ridge has yet to be explained…

image

It is not yet year whether the ridge is a mountain belt that has folded upward, or an extensional crack in the surface through which material from inside Iapetus erupted onto the surface and accumulated locally.

Saturn’s Rings

image

Saturn’s rings are made of countless particles of ice and dust, which Saturn’s moons push and tug, creating gaps and waves.

image

Scientists have never before studied the size, temperature, composition and distribution of Saturn’s rings from Saturn obit. Cassini has captured extraordinary ring-moon interactions, observed the lowest ring-temperature ever recorded at Saturn, discovered that the moon Enceladus is the source for Saturn’s E ring, and viewed the rings at equinox when sunlight strikes the rings edge-on, revealing never-before-seen ring features and details.

image

Cassini also studied features in Saturn’s rings called “spokes,” which can be longer than the diameter of Earth. Scientists think they’re made of thin icy particles that are lifted by an electrostatic charge and only last a few hours.  

Auroras

image

The powerful magnetic field that permeates Saturn is strange because it lines up with the planet’s poles. But just like Earth’s field, it all creates shimmering auroras.

image

Auroras on Saturn occur in a process similar to Earth’s northern and southern lights. Particles from the solar wind are channeled by Saturn’s magnetic field toward the planet’s poles, where they interact with electrically charged gas (plasma) in the upper atmosphere and emit light.  

Turbulent Atmosphere

image

Saturn’s turbulent atmosphere churns with immense storms and a striking, six-sided jet stream near its north pole.

image

Saturn’s north and south poles are also each beautifully (and violently) decorated by a colossal swirling storm. Cassini got an up-close look at the north polar storm and scientists found that the storm’s eye was about 50 times wider than an Earth hurricane’s eye.

image

Unlike the Earth hurricanes that are driven by warm ocean waters, Saturn’s polar vortexes aren’t actually hurricanes. They’re hurricane-like though, and even contain lightning. Cassini’s instruments have ‘heard’ lightning ever since entering Saturn orbit in 2004, in the form of radio waves. But it wasn’t until 2009 that Cassini’s cameras captured images of Saturnian lighting for the first time.

image

Cassini scientists assembled a short video of it, the first video of lightning discharging on a planet other than Earth.

image

Cassini’s adventure will end soon because it’s almost out of fuel. So to avoid possibly ever contaminating moons like Enceladus or Titan, on Sept. 15 it will intentionally dive into Saturn’s atmosphere.

image

The spacecraft is expected to lose radio contact with Earth within about one to two minutes after beginning its decent into Saturn’s upper atmosphere. But on the way down, before contact is lost, eight of Cassini’s 12 science instruments will be operating! More details on the spacecraft’s final decent can be found HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

After 20 years in space, the Cassini spacecraft is running out…

After 20 years in space, the Cassini spacecraft is running out of fuel. In 2010, Cassini began a seven-year mission extension in which the plan was to expend all of the spacecraft’s propellant exploring Saturn and its moons. This led to the Grand Finale and ends with a plunge into the planet’s atmosphere at 6:32 a.m. EDT on Friday, Sept. 15.

The spacecraft will ram through Saturn’s atmosphere at four times the speed of a re-entry vehicle entering Earth’s atmosphere, and Cassini has no heat shield. So temperatures around the spacecraft will increase by 30-to-100 times per minute, and every component of the spacecraft will disintegrate over the next couple of minutes…

Cassini’s gold-colored multi-layer insulation blankets will char and break apart, and then the spacecraft’s carbon fiber epoxy structures, such as the 11-foot (3-meter) wide high-gain antenna and the 30-foot (11-meter) long magnetometer boom, will weaken and break apart. Components mounted on the outside of the central body of the spacecraft will then break apart, followed by the leading face of the spacecraft itself.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.