Category: rocket

Just like people here on Earth, astronauts get shipments too! But not in the typical sense. 8,200 pounds of cargo, including supplies and scientific experiments, is on its way to the International Space Station thanks to Northrop Grumman’s Cygnus cargo spacecraft. This ‘package’ launched out of Wallops Flight Facility on Nov. 2, 2019 at 9:59 a.m. EDT. The investigations aboard the rocket range from research into human control of robotics in space to reprocessing fibers for 3D printing. Get ready, because these new and exciting experiments are arriving soon!

image

THE SEARCH FOR DARK MATTER

Stars, planets and their molecules only make up 15% of our universe. The rest is dark matter. However, no one has actually ever been able to see or study it. The Alpha Magnetic Spectrometer -02 (AMS-02) has been searching for this substance since 2011. Northrop Grumman’s CRS-12 mission carries new parts for AMS-02 that will be added during a series of upcoming spacewalks so that the instrument can continue to help us shed light on this mystery.

image

THE REMOTE EXPLORATION OF EARTH

Rovers operated by astronauts on the International Space Station will attempt to collect geological samples on Earth as part of an investigation called ANALOG-1. The samples, however, are not the important part of the study. Humans experience degraded sensorimotor functions in microgravity that could affect their operation of a robot. This study is designed to learn more about these issues, so that one day astronauts could use robots to perform research on planets they hope to walk on.

image

WOAH, THAT’S RAD

The AstroRad Vest is pretty rad. So rad, in fact, that it was sent up on the launch of Northrop Grumman’s CRS-12 mission. This vest intends to protect astronauts from harmful radiation in space. While going about normal activity on the space station, astronauts will wear AstroRad and make note of things like comfort over long periods of time. This will help researchers on Earth finalize the best design for future long duration missions.

image

EVEN ASTRONAUTS RECYCLE

The Made in Space Recycler (MIS) looks at how different materials on the International Space Station can be turned into filament used for 3D printing. This 3D printing is done right there in space, in the Additive Manufacturing Facility. Similar studies will be conducted on Earth so that comparisons can be made.  

image

FASTER, CHEAPER ACCESS TO SPACE

A collaboration between Automobili Lamborghini and the Houston Methodist Research Institute will be using NanoRacks-Craig-X FTP  to test the performance of 3D-printed carbon fiber composites in the extreme environment of space. The study could lead to materials used both in space and on Earth. For example, the study may help improve the design of implantable devices for therapeutic drug delivery.

image

DESSERT, FRESH FROM THE OVEN

Everyone enjoys the aroma of fresh-baked cookies, even astronauts. On future long-duration space missions, fresh-baked food could have psychological and physiological benefits for crew members, providing them with a greater variety of more nutritious meals. The Zero-G Oven experiment examines heat transfer properties and the process of baking food in microgravity.

image

Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook. 

If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

As the Apollo 11 mission lifted off on the Saturn V rocket, propelling humanity to the surface of the Moon for the very first time, members of the team inside Launch Control Center watched through a window.

The room was crowded with men in white shirts and dark ties, watching attentively as the rocket thrust into the sky. But among them sat one woman, seated to the left of center in the third row in the image below. In fact, this was the only woman in the launch firing room for the Apollo 11 liftoff.

image

This is JoAnn Morgan, the instrumentation controller for Apollo 11. Today, this is what Morgan is most known for. But her career at NASA spanned over 45 years, and she continued to break ceiling after ceiling for women involved with the space program.

“It was just meant to be for me to be in the launching business,” she says. “I’ve got rocket fuel in my blood.”

image

Morgan was inspired to join the human spaceflight program when Explorer 1 was launched into space in 1958, the first satellite to do so from the United States. Explorer 1 was instrumental in discovering what has become known as the Van Allen radiation belt. 

“I thought to myself, this is profound knowledge that concerns everyone on our planet,” she says. “This is an important discovery, and I want to be a part of this team. I was compelled to do it because of the new knowledge, the opportunity for new knowledge.”

image

The opportunity came when Morgan spotted an advertisement for two open positions with the Army Ballistic Missile Agency. The ad listed two Engineer’s Aide positions available for two students over the summer.

 “Thank God it said ‘students’ and not ‘boys’” says Morgan, “otherwise I wouldn’t have applied.”

After Morgan got the position, the program was quickly rolled into a brand-new space exploration agency called NASA. Dr. Kurt Debus, the first director of Kennedy Space Center (KSC), looked at Morgan’s coursework and provided Morgan with a pathway to certification. She was later certified as a Measurement and Instrumentation Engineer and a Data Systems Engineer.

image

There was a seemingly infinite amount of obstacles that Morgan was forced to overcome — everything from obscene phone calls at her station to needing a security guard to clear out the men’s only restroom.

“You have to realize that everywhere I went — if I went to a procedure review, if I went to a post-test critique, almost every single part of my daily work — I’d be the only woman in the room,” reflects Morgan. “I had a sense of loneliness in a way, but on the other side of that coin, I wanted to do the best job I could.”

image

To be the instrumentation controller in the launch room for the Apollo 11 liftoff was as huge as a deal as it sounds. For Morgan, to be present at that pivotal point in history was ground-breaking: “It was very validating. It absolutely made my career.”

image

Much like the Saturn V rocket, Morgan’s career took off. She was the first NASA woman to win a Sloan Fellowship, which she used to earn a Master of Science degree in management from Stanford University in California. When she returned to NASA, she became a divisions chief of the Computer Systems division.

image

From there, Morgan excelled in many other roles, including deputy of Expendable Launch Vehicles, director of Payload Projects Management and director of Safety and Mission Assurance. She was one of the last two people who verified the space shuttle was ready to launch and the first woman at KSC to serve in an executive position, associate director of the center.

image

To this day, Morgan is still one of the most decorated women at KSC. Her numerous awards and recognitions include an achievement award for her work during the activation of Apollo Launch Complex 39, four exceptional service medals and two outstanding leadership medals. In 1995, she was inducted into the Florida Women’s Hall of Fame.

After serving as the director of External Relations and Business Development, she retired from NASA in August 2003.

image

Today, people are reflecting on the 50th anniversary of Apollo 11, looking back on photos of the only woman in the launch firing room and remembering Morgan as an emblem of inspiration for women in STEM. However, Morgan’s takeaway message is to not look at those photos in admiration, but in determination to see those photos “depart from our culture.”

“I look at that picture of the firing room where I’m the only woman. And I hope all the pictures now that show people working on the missions to the Moon and onto Mars, in rooms like Mission Control or Launch Control or wherever — that there will always be several women. I hope that photos like the ones I’m in don’t exist anymore.”

image

Follow Women@NASA for more stories like this one, and make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

It’s almost launch day! On Monday, June 24, the launch window opens for the Department of Defense’s Space Test Program-2 launch aboard a SpaceX Falcon Heavy. Among the two dozen satellites on board are four NASA payloads whose data will help us improve satellite design and performance.

Our experts will be live talking about the launch and NASA’s missions starting this weekend.

🛰 Tune in on Sunday, June 23, at 12 p.m. EDT (9 a.m. PDT) for a live show diving into the technology behind our projects.

🚀 Watch coverage of the launch starting at 11 p.m. EDT (8 p.m. PDT) on Monday, June 24

Join us at nasa.gov/live, and get updates on the launch at blogs.nasa.gov/spacex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Whether or not you caught the SpaceX Crew Dragon launch this past weekend, here’s your chance to learn why this mission, known as Demo-1, is such a big deal.

The First of its Kind

Demo-1 is the first flight test of an American spacecraft designed for humans built and operated by a commercial company. 

Liftoff

image

The SpaceX Crew Dragon lifted off at 2:49 a.m. EST Saturday, March 2, on the company’s Falcon 9 rocket from Kennedy Space Center. 

This was the first time in history a commercially-built American crew spacecraft and rocket launched from American soil. 

Docking the Dragon

image

After making 18 orbits of Earth, the Crew Dragon spacecraft successfully attached to the International Space Station’s Harmony module at 5:51 a.m. EST Sunday, March 3. The Crew Dragon used the station’s new international docking adapter for the first time since astronauts installed it in August 2016

The docking phase, in addition to the return and recovery of Crew Dragon, are critical to understanding the system’s ability to support crew flights.

A New Era in Human Spaceflight

image

Although the test is uncrewed, that doesn’t mean the Crew Dragon is empty. Along for the ride was Ripley, a lifelike test device outfitted with sensors to provide data about potential effects on future astronauts. (There is also a plush Earth doll strapped inside that can float in the microgravity!)

Astronauts on the International Space Station welcomed the Crew Dragon spacecraft in a ceremony onboard. NASA Astronaut Anne McClain from inside Crew Dragon said, “Welcome to a new era in human spaceflight.”

Inside the Dragon

For future operational missions, Crew Dragon will be able to launch as many as four crew members and carry more than 220 pounds of cargo. This will increase the number of astronauts who are able to live onboard the station, which will create more time for research in the unique microgravity environment.

SpaceX and NASA

image

Elon Musk, CEO and lead designer at SpaceX, expressed appreciation for NASA’s support: “SpaceX would not be here without NASA, without the incredible work that was done before SpaceX even started and without the support after SpaceX did start.”

Preparation for Demo-2

image

NASA and SpaceX will use data from Demo-1 to further prepare for Demo-2, the crewed flight test that will carry NASA astronauts and Doug Hurley and Bob Behnken to the International Space Station. NASA will validate the performance of SpaceX’s systems before putting crew on board for the Demo-2 flight, currently targeted for July 2019.

Undocking

image

The Crew Dragon is designed to stay docked to station for up to 210 days, although the spacecraft used for this flight test will remain docked to the space station for only five days, departing Friday, March 8. (We will be providing live coverage — don’t miss it!)

Demo-1: So What?

image

Demo-1 is a big deal because it demonstrates NASA and commercial companies working together to advance future space exploration! With Demo-1’s success, NASA and SpaceX will begin to prepare to safely fly astronauts to the orbital laboratory.

Follow along with mission updates with the Space Station blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

This winter, our scientists and engineers traveled to the
world’s northernmost civilian town to launch rockets equipped with cutting-edge
scientific instruments.

image

This is the beginning of a 14-month-long campaign to study a particular
region of Earth’s magnetic field — which means launching near the poles. What’s
it like to launch a science rocket in these extreme conditions?

image

Our planet is protected by a natural magnetic field that
deflects most of the particles that flow out from the Sun — the solar wind —
away from our atmosphere. But near the north and south poles, two oddities in
Earth’s magnetic field funnel these solar particles directly into our
atmosphere. These regions are the polar cusps, and it turns out they’re the
ideal spot for studying how our atmosphere interacts with space.

image

The scientists of the Grand Challenge Initiative — Cusp are
using sounding rockets to do their research. Sounding
rockets are suborbital rockets that launch to a few hundred miles in altitude,
spending a few minutes in space before falling back to Earth. That means
sounding rockets can carry sensitive instruments above our atmosphere to study
the Sun, other stars and even distant galaxies.

They also fly directly through some of the most interesting
regions of Earth’s atmosphere, and that’s what scientists are taking advantage
of for their Grand Challenge experiments.

image

One of the ideal rocket ranges for cusp science is in
Ny-Ålesund, Svalbard, off the coast of Norway and within the Arctic circle.
Because of its far northward position, each morning Svalbard passes directly
under Earth’s magnetic cusp.

But launching in this extreme, remote environment puts another
set of challenges on the mission teams. These launches need to happen during
the winter, when Svalbard experiences 24/7 darkness because of Earth’s axial
tilt. The launch teams can go months without seeing the Sun.

image

Like for all rocket launches, the science teams have to wait
for the right weather conditions to launch. Because they’re studying upper
atmospheric processes, some of these teams also have to wait for other science
conditions, like active auroras. Auroras are created when charged particles
collide with Earth’s atmosphere — often triggered by solar storms or changes in
the solar wind — and they’re related to many of the upper-atmospheric processes
that scientists want to study near the magnetic cusp.

image

But even before launch, the extreme conditions make
launching rockets a tricky business — it’s so cold that the rockets must be
encased in styrofoam before launch to protect them from the low temperatures
and potential precipitation.

image

When all is finally ready, an alarm sounds throughout the
town of Ny-Ålesund to alert residents to the impending launch. And then it’s
up, up and away! This photo shows the launch of the twin VISIONS-2 sounding rockets on Dec.
7, 2018 from Ny-Ålesund.

image

These rockets are designed to break up during flight — so
after launch comes clean-up. The launch teams track where debris lands so that
they can retrieve the pieces later.

image

The
next launch of the Grand Challenge Initiative is AZURE, launching from Andøya
Space Center in Norway in March 2019.

 For even more about what it’s like to launch science rockets
in extreme conditions, check out one scientist’s notes from the field: https://go.nasa.gov/2QzyjR4

image

For updates on the Grand Challenge Initiative and other
sounding rocket flights, visit nasa.gov/soundingrockets or follow along with NASA Wallops and NASA
heliophysics on Twitter and Facebook.

@NASA_Wallops | NASA’s Wallops Flight Facility | @NASASun | NASA Sun Science