Category: planets

What’s Up – July 2018

What’s Up for July?

Mars is closest to Earth since 2003!

image

July’s night skies feature Mars opposition on the 27th, when Mars, Earth, and the Sun all line up, and Mars’ closest approach to Earth since 2003 on the 31st. 

image

If you’ve been sky watching for 15 years or more, then you’ll remember August 2003, when Mars approached closer to Earth than it had for thousands of years.

image

It was a very small percentage closer, but not so much that it was as big as the moon as some claimed.   

image

Astronomy clubs everywhere had long lines of people looking through their telescopes at the red planet, and they will again this month!

image

 If you are new to stargazing, this month and next will be a great time to check out Mars. 

image

Through a telescope, you should be able to make out some of the light and dark features, and sometimes polar ice. Right now, though, a huge Martian dust storm is obscuring many features, and less planetary detail is visible.

image

July 27th is Mars opposition, when Mars, Earth, and the Sun all line up, with Earth directly in the middle.

image

A few days later on July 31st is Mars’ closest approach. That’s when Mars and Earth are nearest to each other in their orbits around the Sun. Although there will be a lot of news focusing on one or the other of these two dates, Mars will be visible for many months.

image

By the end of July, Mars will be visible at sunset.

image

But the best time to view it is several hours after sunset, when Mars will appear higher in the sky.

image

Mars will still be visible after July and August, but each month it will shrink in apparent size as it travels farther from Earth in its orbit around the Sun.

image

On July 27th a total lunar eclipse will be visible in Australia, Asia, Africa, Europe and South America.

image

For those viewers, Mars will be right next to the eclipsing moon!

image

Next month will feature August’s summer Perseids. It’s not too soon to plan a dark sky getaway for the most popular meteor shower of the year! 

Watch the full What’s Up for July Video:

There are so many
sights to see in the sky. To stay informed, subscribe to our What’s Up video
series on Facebook
.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10 Things: Mars Helicopter

When our next Mars rover lands on the Red Planet in
2021, it will deliver a groundbreaking technology demonstration: the
first helicopter to ever fly on a planetary body other than Earth. This
Mars Helicopter will demonstrate the first controlled, powered,
sustained flight on another world. It could also pave the way for future
missions that guide rovers and gather science data and images at
locations previously inaccessible on Mars. This exciting new technology
could change the way we explore Mars.

image

1. Its body is small, but its blades are mighty.

One of the biggest engineering challenges is getting the
Mars Helicopter’s blades just right. They need to push enough air
downward to receive an upward force that allows for thrust and
controlled flight — a big concern on a planet where the atmosphere is
only one percent as dense as Earth’s. “No helicopter has flown in those
flight conditions – equivalent to 100,000 feet (30,000 meters) on
Earth,” said Bob Balaram, chief engineer for the project at our Jet
Propulsion Laboratory.

image

2. It has to fly in really thin Martian air.

To compensate for Mars’ thin atmosphere, the blades must
spin much faster than on an Earth helicopter, and the blade size
relative to the weight of the helicopter has to be larger too. The Mars
Helicopter’s rotors measure 4 feet wide (about 1.2 meters) long, tip to
tip. At 2,800 rotations per minute, it will spin about 10 times faster
than an Earth helicopter.

At the same time, the blades shouldn’t flap around too much, as
the helicopter’s design team discovered during testing. Their solution:
make the blades more rigid. “Our blades are much stiffer than any
terrestrial helicopter’s would need to be,” Balaram said.  

The body, meanwhile, is tiny — about the size of a softball. In
total, the helicopter will weigh just under 4 pounds (1.8 kilograms).

image

3. It will make up to five flights on Mars.

Over a 30-day period on Mars, the helicopter will attempt
up to five flights, each time going farther than the last. The
helicopter will fly up to 90 seconds at a time, at heights of up to 10
to 15 feet (3 to 5 meters). Engineers will learn a lot about flying a
helicopter on Mars with each flight, since it’s never been done before!

image

4. The Mars Helicopter team has already completed groundbreaking tests.

Because a helicopter has never visited Mars before, the
Mars Helicopter team has worked hard to figure out how to predict the
helicopter’s performance on the Red Planet. “We had to invent how to do
planetary helicopter testing on Earth,” said Joe Melko, deputy chief
engineer of Mars Helicopter, based at JPL.

The team, led by JPL and including members from JPL,
AeroVironment Inc.,  Ames Research Center, and Langley Research
Center, has designed, built and tested a series of test vehicles.

In 2016, the team flew a full-scale prototype test model
of the helicopter in the 25-foot (7.6-meter) space simulator at JPL. The
chamber simulated the low pressure of the Martian atmosphere. More
recently, in 2018, the team built a fully autonomous helicopter designed
to operate on Mars, and successfully flew it in the 25-foot chamber in
Mars-like atmospheric density.

Engineers have also exercised the rotors of a test
helicopter in a cold chamber to simulate the low temperatures of Mars at
night. In addition, they have taken design steps to deal with Mars-like
radiation conditions. They have also tested the helicopter’s landing
gear on Mars-like terrain. More tests are coming to see how it performs
with Mars-like winds and other conditions.

image

5. The camera is as good as your cell phone camera.

The helicopter’s first priority is successfully flying on
Mars, so engineering information takes priority. An added bonus is its
camera. The Mars Helicopter has the ability to take color photos with a
13-megapixel camera — the same type commonly found in smart phones
today. Engineers will attempt to take plenty of good pictures.

6. It’s battery-powered, but the battery is rechargeable.

The helicopter requires 360 watts of power for each
second it hovers in the Martian atmosphere – equivalent to the power
required by six regular lightbulbs. But it isn’t out of luck when its
lithium-ion batteries run dry. A solar array on the helicopter will
recharge the batteries, making it a self-sufficient system as long as
there is adequate sunlight. Most of the energy will be used to keep the
helicopter warm, since nighttime temperatures on Mars plummet to around
minus 130 degrees Fahrenheit (minus 90 Celsius). During daytime flights,
temperatures may rise to a much warmer minus 13 to minus 58 degrees
Fahrenheit to (minus 25 to minus 50 degrees Celsius) — still chilly by
Earth standards. The solar panel makes an average of 3 watts of power
continuously during a 12-hour Martian day.

7. The helicopter will be carried to Mars under the belly of the rover.

Somewhere between 60 to 90 Martian days (or sols) after
the Mars 2020 rover lands, the helicopter will be deployed from the
underside of the rover. Mars Helicopter Delivery System on the rover
will rotate the helicopter down from the rover and release it onto the
ground. The rover will then drive away to a safe distance.

image

8. The helicopter will talk to the rover.

The Mars 2020 rover will act as a telecommunication
relay, receiving commands from engineers back on Earth and relaying them
to the helicopter. The helicopter will then send images and information
about its own performance to the rover, which will send them back to
Earth. The rover will also take measurements of wind and atmospheric
data to help flight controllers on Earth.

9. It has to fly by itself, with some help.

Radio signals take time to travel to Mars — between four
and 21 minutes, depending on where Earth and Mars are in their orbits —
so instantaneous communication with the helicopter will be impossible.
That means flight controllers can’t use a joystick to fly it in real
time, like a video game. Instead, they need to send commands to the
helicopter in advance, and the little flying robot will follow through.
Autonomous systems will allow the helicopter to look at the ground,
analyze the terrain to look how fast it’s moving, and land on its own.

10. It could pave the way for future missions.

A future Mars helicopter could scout points of interest,
help scientists and engineers select new locations and plan driving
routes for a rover. Larger standalone helicopters could carry science
payloads to investigate multiple sites at Mars. Future helicopters could
also be used to fly to places on Mars that rovers cannot reach, such as
cliffs or walls of craters. They could even assist with human
exploration one day. Says Balaram: “Someday, if we send astronauts,
these could be the eyes of the astronauts across Mars.”

Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Solar System: 10 Things to Know

Movie Night

Summer break is just around the corner. Hang a sheet from the clothesline in the backyard and fire up the projector for a NASA movie night.

1. Mars in a Minute

image

Back in the day, movies started with a cartoon. Learn the secrets of the Red Planet in these animated 60 second chunks.

2. Crash of the Titans

image

Watch two galaxies collide billions of years from now in this high-definition visualization.

3. Tour the Moon in 4K

image

Wait for the dark of the waning Moon next weekend to take in this 4K tour of our constant celestial companion.

4. Seven Years of the Sun

image

Watch graceful dances in the Sun’s atmosphere in this series of videos created by our 24/7 Sun-sentinel, the Solar Dynamic Observatory (SDO).

5. Light ‘Em Up

image

Crank up the volume and learn about NASA science for this short video about some of our science missions, featuring a track by Fall Out Boy.

6. Bennu’s Journey

image

Follow an asteroid from its humble origins to its upcoming encounter with our spacecraft in this stunning visualization.

7. Lunar Landing Practice

Join Apollo mission pilots as they fly—and even crash—during daring practice runs for landing on the Moon.

8. Earthrise

image

Join the crew of Apollo 8 as they become the first human beings to see the Earth rise over the surface of the Moon.

9. Musical Descent to Titan

image

Watch a musical, whimsical recreation of the 2005 Huygens probe descent to Titan, Saturn’s giant moon.

10. More Movies

image

Our Goddard Scientific Visualization Studio provides a steady stream of fresh videos for your summer viewing pleasure. Come back often and enjoy.

Read the full version of this article on the web HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

What’s Up – June 2018

What’s Up For June?

Jupiter and Venus at sunset, Mars, Saturn and Vesta until dawn.

image

First up is Venus. It reaches its highest sunset altitude for the year this month and sets more than two hours after sunset.

image

You can’t miss Jupiter, only a month after its opposition–when Earth was directly between Jupiter and the Sun.

image

The best time to observe Jupiter through a telescope is 10:30 p.m. at the beginning of the month and as soon as it’s dark by the end of the month.  

image

Just aim your binoculars at the bright planet for a view including the four Galilean moons. Or just enjoy Jupiter with your unaided eye!

image

Saturn is at opposition June 27th, when it and the Sun are on opposite sides of Earth. It rises at sunset and sets at sunrise. Great Saturn viewing will last several more months. The best views this month will be just after midnight.

image

All year, the rings have been tilted wide open–almost 26 degrees wide this month–giving us a great view of Saturn’s distinctive rings.

image

The tilt offers us a view of the north polar region, so exquisitely imaged by the Cassini spacecraft.

image

Near Saturn, the brightest asteroid–Vesta–is so bright that it can be seen with your unaided eye. It will be visible for several months.

image

A detailed star chart will help you pick out the asteroid from the stars. The summer Milky way provides a glittery backdrop.

image

Finally, Mars grows dramatically in brightness and size this month and is visible by 10:30 p.m. by month end.

image

The best views are in the early morning hours. Earth’s closest approach with Mars is only a month away. It’s the closest Mars has been to us since 2003.

image

Watch the full What’s Up for June Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Solar System 10 Things to Know: Planetary Atmo…

Every time you take a breath of fresh air, it’s easy to forget you can safely do so because of Earth’s atmosphere. Life on Earth could not exist without that protective cover that keeps us warm, allows us to breathe and protects us from harmful radiation—among other things.

What makes Earth’s atmosphere special, and how do other planets’ atmospheres compare? Here are 10 tidbits:

1. On Earth, we live in the troposphere, the closest atmospheric layer to Earth’s surface. “Tropos” means “change,” and the name reflects our constantly changing weather and mixture of gases. 

It’s 5 to 9 miles (8 to 14 kilometers) thick, depending on where you are on Earth, and it’s the densest layer of atmosphere. When we breathe, we’re taking in an air mixture of about 78 percent nitrogen, 21 percent oxygen and 1 percent argon, water vapor and carbon dioxide. More on Earth’s atmosphere›

2. Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the Red Planet’s low atmospheric pressure, and with little methane or water vapor to reinforce the weak greenhouse effect (warming that results when the atmosphere traps heat radiating from the planet toward space), Mars’ surface remains quite cold, the average surface temperature being about -82 degrees Fahrenheit (minus 63 degrees Celsius). More on the greenhouse effect›

3. Venus’ atmosphere, like Mars’, is nearly all carbon dioxide. However, Venus has about 154,000 times more carbon dioxide in its atmosphere than Earth (and about 19,000 times more than Mars does), producing a runaway greenhouse effect and a surface temperature hot enough to melt lead. A runaway greenhouse effect is when a planet’s atmosphere and surface temperature keep increasing until the surface gets so hot that its oceans boil away. More on the greenhouse effect›

4. Jupiter likely has three distinct cloud layers (composed of ammonia, ammonium hydrosulfide and water) in its “skies” that, taken together, span an altitude range of about 44 miles (71 kilometers). The planet’s fast rotation—spinning once every 10 hours—creates strong jet streams, separating its clouds into dark belts and bright zones wrapping around the circumference of the planet. More on Jupiter›

5. Saturn’s atmosphere—where our Cassini spacecraft ended its 13 extraordinary years of exploration of the planet—has a few unusual features. Its winds are among the fastest in the solar system, reaching speeds of 1,118 miles (1,800 kilometers) per hour. Saturn may be the only planet in our solar system with a warm polar vortex (a mass of swirling atmospheric gas around the pole) at both the North and South poles. Also, the vortices have “eye-wall clouds,” making them hurricane-like systems like those on Earth.

Another uniquely striking feature is a hexagon-shaped jet streamencircling the North Pole. In addition, about every 20 to 30 Earth years, Saturn hosts a megastorm (a great storm that can last many months). More on Saturn›

6. Uranus gets its signature blue-green color from the cold methane gas in its atmosphere and a lack of high clouds. The planet’s minimum troposphere temperature is 49 Kelvin (minus 224.2 degrees Celsius), making it even colder than Neptune in some places. Its winds move backward at the equator, blowing against the planet’s rotation. Closer to the poles, winds shift forward and flow with the planet’s rotation. More on Uranus›

7. Neptune is the windiest planet in our solar system. Despite its great distance and low energy input from the Sun, wind speeds at Neptune surpass 1,200 miles per hour (2,000 kilometers per hour), making them three times stronger than Jupiter’s and nine times stronger than Earth’s. Even Earth’s most powerful winds hit only about 250 miles per hour (400 kilometers per hour). Also, Neptune’s atmosphere is blue for the very same reasons as Uranus’ atmosphere. More on Neptune›

8. WASP-39b, a hot, bloated, Saturn-like exoplanet (planet outside of our solar system) some 700 light-years away, apparently has a lot of water in its atmosphere. In fact, scientists estimate that it has about three times as much water as Saturn does. More on this exoplanet›

9. A weather forecast on “hot Jupiters”—blistering, Jupiter-like exoplanets that orbit very close to their stars—might mention cloudy nights and sunny days, with highs of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin). Their cloud composition depends on their temperature, and studies suggest that the clouds are unevenly distributed. More on these exoplanets›

10. 55 Cancri e, a “super Earth” exoplanet (a planet outside of our solar system with a diameter between Earth’s and Neptune’s) that may be covered in lava, likely has an atmosphere containing nitrogen, water and even oxygen–molecules found in our atmosphere–but with much higher temperatures throughout. Orbiting so close to its host star, the planet could not maintain liquid water and likely would not be able to support life. More on this exoplanet›

Read the full version of this week’s Solar System 10 Things to Know HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

The Hunt for New Worlds Continues with TESS

We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.

image

Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.

image

TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!

image

TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.

image

What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.

image

TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).

image

Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.

image

The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!

Watch the Launch + More!

image

Sunday, April 15
11 a.m. EDT – NASA Social Mission Overview

Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.

Watch HERE


1 p.m. EDT – Prelaunch News Conference

Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.

Watch HERE.


3 p.m. EDT – Science News Conference

Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast. 

Watch HERE.


4 p.m. EDT – TESS Facebook Live

This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team. 

Watch HERE


Monday, April 16
10 a.m. EDT – NASA EDGE: TESS Facebook Live

This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.

Watch HERE.

1 p.m. EDT – Reddit AMA

Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!

Join in HERE.


6 p.m. EDT – Launch Coverage!

TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.

Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Solar System: 10 Things to Know This Week

Planets Outside Our Solar System

Let the planet-hunting begin!

Our Transiting Exoplanet Survey Satellite (TESS), which will scan the skies to look for planets beyond our solar system—known as exoplanets—is now in Florida to begin preparations for launch in April. Below, 10 Things to know about the many, many unknown planets out there awaiting our discovery.

1Exo-what?

We call planets in our solar system, well, planets, but the many planets we’re starting to discover outside of our solar system are called exoplanets. Basically, they’re planets that orbit another star.

2All eyes on TRAPPIST-1.

Remember the major 2016 announcement that we had discovered seven planets 40 light-years away, orbiting a star called TRAPPIST-1? Those are all exoplanets. (Here’s a refresher.)

3Add 95 new ones to that.

Just last month, our Kepler telescope discovered 95 new exoplanets beyond our solar system (on top of the thousands of exoplanets Kepler has discovered so far). The total known planet count beyond our solar system is now more than 3,700. The planets range in size from mostly rocky super-Earths and fluffy mini-Neptunes, to Jupiter-like giants. They include a new planet orbiting a very bright star—the brightest star ever discovered by Kepler to have a transiting planet.

4Here comes TESS.

How many more exoplanets are out there waiting to be discovered? TESS will monitor more than 200,000 of the nearest and brightest stars in search of transit events—periodic dips in a star’s brightness caused by planets passing in front—and is expected to find thousands of exoplanets.

5With a sidekick, too.

Our upcoming James Webb Space Telescope, will provide important follow-up observations of some of the most promising TESS-discovered exoplanets. It will also allow scientists to study their atmospheres and, in some special cases, search for signs that these planets could support life.

6Prepped for launch.

TESS is scheduled to launch on a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station nearby our Kennedy Space Center in Florida, no earlier than April 16, pending range approval.

7A groundbreaking find.

In 1995, 51 Pegasi b (also called “Dimidium”) was the first exoplanet discovered orbiting a star like our Sun. This find confirmed that planets like the ones in our solar system could exist elsewhere in the universe.

8Trillions await.

A recent statistical estimate places, on average, at least one planet around every star in the galaxy. That means there could be a trillion planets in our galaxy alone, many of them in the range of Earth’s size.

9Signs of life.

Of course, our ultimate science goal is to find unmistakable signs of current life. How soon can that happen? It depends on two unknowns: the prevalence of life in the galaxy and a bit of luck. Read more about the search for life.

10Want to explore the galaxy?

No need to be an astronaut. Take a trip outside our solar system with help from our Exoplanet Travel Bureau.

Read the full version of this week’s ‘10 Things to Know’ article HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Solar System: 10 Things to Know This Week

Week of March 5: Great Shots
Inspiring views of our solar system and beyond

1-Mars-By-Numbers

image

“The first TV image of Mars, hand colored strip-by-strip, from Mariner 4 in 1965. The completed image was framed and presented to JPL director, William H. Pickering. Truly a labor of love for science!” -Kristen Erickson, NASA Science Engagement and Partnerships Director

2-Night Life

image

“There are so many stories to this image. It is a global image, but relates to an individual in one glance. There are stories on social, economic, population, energy, pollution, human migration, technology meets science, enable global information, etc., that we can all communicate with similar interests under one image.” -Winnie Humberson, NASA Earth Science Outreach Manager

3-Pale Blue Dot

image

“Whenever I see this picture, I wonder…if another species saw this blue dot what would they say and would they want to discover what goes on there…which is both good and bad. However, it would not make a difference within the eternity of space—we’re so insignificant…in essence just dust in the galactic wind—one day gone forever.”

-Dwayne Brown, NASA Senior Communications Official

4-Grand Central

image

“I observed the Galactic Center with several X-ray telescopes before Chandra, including the Einstein Observatory and ROSAT. But the Chandra image looks nothing like those earlier images, and it reminded me how complex the universe really is. Also I love the colors.” -Paul Hertz, Director, NASA Astrophysics Division

5-Far Side Photobomb

image

“This image from the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the Moon as it moved in front of the sunlit side of Earth in 2015. It shows a view of the farside of the Moon, which faces the Sun, that is never directly visible to us here on Earth. I found this perspective profoundly moving and only through our satellite views could this have been shared.” -Michael Freilich, Director NASA Earth Science Division

6-”Shocking, Exciting and Wonderful”

image

“Pluto was so unlike anything I could imagine based on my knowledge of the Solar System. It showed me how much about the outer solar system we didn’t know. Truly shocking, exciting and wonderful all at the same time.” -Jim Green, Director, NASA Planetary Science Division

7-Slices of the Sun

image

“This is an awesome image of the Sun through the Solar Dynamic Observatory’s many filters. It is one of my favorites.” – Peg Luce, Director, NASA Heliophysics Division (Acting)

8-Pluto’s Cold, Cold Heart

image

“This high-resolution, false color image of Pluto is my favorite. The New Horizons flyby of Pluto on July 14, 2015 capped humanity’s initial reconnaissance of every major body in the solar system. To think that all of this happened within our lifetime! It’s a reminder of how privileged we are to be alive and working at NASA during this historic era of space exploration.” – Laurie Cantillo, NASA Planetary Science Public Affairs Officer

9-Family Portrait

image

“The Solar System family portrait, because it is a symbol what NASA exploration is really about: Seeing our world in a new and bigger way.” – Thomas H. Zurbuchen, Associate Administrator, NASA Science Mission Directorate

10-Share Your Favorite Space Shots

image

Tag @NASASolarSystem on your favorite social media platform with a link to your favorite image and few words about why it makes your heart thump.

Check out the full version of this article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   

What’s Up – March 2018

What’s Up For March?

Several Planets and the Zodiacal Light!

image

This month, at sunset, catch elusive Mercury, bright Venus, the Zodiacal Light, Mars, Saturn and Jupiter between midnight and dawn!

image

Both Venus and Mercury play the part of “evening stars” this month. At the beginning of the month they appear low on the western horizon.

image

The Moon itself joins the pair from March 18th through the 20th. 

image

The Moon skims by the Pleiades star cluster and Taurus’s bright red star Aldebaran on the next few evenings, March 21 through the 23rd.

image

Jupiter, king of the planets, rises just before midnight this month and earlier by month end. 

image

Even through the smallest telescope or average binoculars, you should see the 4 Galilean moons, Europa, Io, Callisto and Ganymede.

image

The March morning sky offers dazzling views of Mars and Saturn all month long.

image

Through a telescope, you can almost make out some of the surface features on Mars.

image

Look a little farther into Mars’ future and circle May 5th with a red marker. When our InSight spacecraft launches for its 6 month journey to the Red Planet, Mars will be easily visible to your unaided eye. 

image

Keep watching Mars as it travels closer to Earth. It will be closest in late July, when the red planet will appear larger in apparent diameter than it has since 2003!

image

You are in for a real treat if you can get away to a dark sky location on a moonless night this month – the Zodiacal Light and the Milky Way intersect! 

image

The Zodiacal light is a faint triangular glow seen from a dark sky just after sunset in the spring or just before sunrise in the fall.

image

The more familiar Milky Way is one of the spiral arms of our galaxy. 

image

What we’re seeing is sunlight reflecting off dust grains that circle the Sun in the inner solar system. These dust grains journey across our sky in the ecliptic, the same plane as the Moon and the planets.

Watch the full What’s Up for March Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   

Solar System: 10 Things to Know This Week

Pioneer Days

Someone’s got to be first. In space, the first explorers beyond Mars were Pioneers 10 and 11, twin robots who charted the course to the cosmos.

image

1-Before Voyager

image

Voyager, with its outer solar system tour and interstellar observations, is often credited as the greatest robotic space mission. But today we remember the plucky Pioneers, the spacecraft that proved Voyager’s epic mission was possible.

2-Where No One Had Gone Before

image

Forty-five years ago this week, scientists still weren’t sure how hard it would be to navigate the main asteroid belt, a massive field of rocky debris between Mars and Jupiter. Pioneer 10 helped them work that out, emerging from first the first six-month crossing in February 1973. Pioneer 10 logged a few meteoroid hits (fewer than expected) and taught engineers new tricks for navigating farther and farther beyond Earth.

3-Trailblazer No. 2

image

Pioneer 11 was a backup spacecraft launched in 1973 after Pioneer 10 cleared the asteroid belt. The new mission provided a second close look at Jupiter, the first close-up views of Saturn and also gave Voyager engineers plotting an epic multi-planet tour of the outer planets a chance to practice the art of interplanetary navigation.

4-First to Jupiter

image

Three-hundred and sixty-three years after humankind first looked at Jupiter through a telescope, Pioneer 10 became the first human-made visitor to the Jovian system in December 1973. The spacecraft spacecraft snapped about 300 photos during a flyby that brought it within 81,000 miles (about 130,000 kilometers) of the giant planet’s cloud tops.

5-Pioneer Family

image

Pioneer began as a Moon program in the 1950s and evolved into increasingly more complicated spacecraft, including a Pioneer Venus mission that delivered a series of probes to explore deep into the mysterious toxic clouds of Venus. A family portrait (above) showing (from left to right) Pioneers 6-9, 10 and 11 and the Pioneer Venus Orbiter and Multiprobe series. Image date: March 11, 1982. 

6-A Pioneer and a Pioneer

image

Classic rock has Van Halen, we have Van Allen. With credits from Explorer 1 to Pioneer 11, James Van Allen was a rock star in the emerging world of planetary exploration. Van Allen (1914-2006) is credited with the first scientific discovery in outer space and was a fixture in the Pioneer program. Van Allen was a key part of the team from the early attempts to explore the Moon (he’s pictured here with Pioneer 4) to the more evolved science platforms aboard Pioneers 10 and 11.

7-The Farthest…For a While

image

For more than 25 years, Pioneer 10 was the most distant human-made object, breaking records by crossing the asteroid belt, the orbit of Jupiter and eventually even the orbit of Pluto. Voyager 1, moving even faster, claimed the most distant title in February 1998 and still holds that crown.

8-Last Contact

image

We last heard from Pioneer 10 on Jan. 23, 2003. Engineers felt its power source was depleted and no further contact should be expected. We tried again in 2006, but had no luck. The last transmission from Pioneer 11 was received in September 1995. Both missions were planned to last about two years.

9-Galactic Ghost Ships

image

Pioneers 10 and 11 are two of five spacecraft with sufficient velocity to escape our solar system and travel into interstellar space. The other three—Voyagers 1 and 2 and New Horizons—are still actively talking to Earth. The twin Pioneers are now silent. Pioneer 10 is heading generally for the red star Aldebaran, which forms the eye of Taurus (The Bull). It will take Pioneer over 2 million years to reach it. Pioneer 11 is headed toward the constellation of Aquila (The Eagle) and will pass nearby in about 4 million years.

10-The Original Message to the Cosmos

image

Years before Voyager’s famed Golden Record, Pioneers 10 and 11 carried the original message from Earth to the cosmos. Like Voyager’s record, the Pioneer plaque was the brainchild of Carl Sagan who wanted any alien civilization who might encounter the craft to know who made it and how to contact them. The plaques give our location in the galaxy and depicts a man and woman drawn in relation to the spacecraft.

Read the full version of this week’s 10 Things article HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.