Category: planet

Take a deep breath. Even if the air looks clea…

Take a deep breath. Even if the air looks clear, it is nearly certain that you will inhale millions of solid particles and liquid droplets. These ubiquitous specks of matter are known as aerosols, and they can be found in the air over oceans, deserts, mountains, forests, ice, and every ecosystem in between.

If you have ever watched smoke billowing from a wildfire, ash erupting from a volcano, or dust blowing in the wind, you have seen aerosols. Satellites like Terra, Aqua, Aura, and Suomi NPP “see” them as well, though they offer a completely different perspective from hundreds of kilometers above Earth’s surface. A version of one of our models called the Goddard Earth Observing System Forward Processing (GEOS FP) offers a similarly expansive view of the mishmash of particles that dance and swirl through the atmosphere.

The visualization above highlights GEOS FP model output for aerosols on August 23, 2018. On that day, huge plumes of smoke drifted over North America and Africa, three different tropical cyclones churned in the Pacific Ocean, and large clouds of dust blew over deserts in Africa and Asia. The storms are visible within giant swirls of sea salt aerosol(blue), which winds loft into the air as part of sea spray. Black carbon particles (red) are among the particles emitted by fires; vehicle and factory emissions are another common source. Particles the model classified as dust are shown in purple. The visualization includes a layer of night light data collected by the day-night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP that shows the locations of towns and cities.

Make sure to follow us on Tumblr for your regular dose of space:

Solar System 10 Things: Spitzer Space Telescop…

Our Spitzer Space Telescope is celebrating 15 years since its launch on August 25, 2003. This remarkable spacecraft has made discoveries its designers never even imagined, including some of the seven Earth-size planets of TRAPPIST-1. Here are some key facts about Spitzer:

1. Spitzer is one of our Great Observatories.

Our Great Observatory Program aimed to explore the universe with four large space telescopes, each specialized in viewing the universe in different wavelengths of light. The other Great Observatories are our Hubble Space Telescope, Chandra X-Ray Observatory, and Compton Gamma-Ray Observatory. By combining data from different kinds of telescopes, scientists can paint a fuller picture of our universe.

2. Spitzer operates in infrared light.

Infrared wavelengths of light, which primarily come from heat radiation, are too long to be seen with human eyes, but are important for exploring space — especially when it comes to getting information about something extremely far away. From turbulent clouds where stars are born to small asteroids close to Earth’s orbit, a wide range of phenomena can be studied in infrared light. Objects too faint or distant for optical telescopes to detect, hidden by dense clouds of space dust, can often be seen with Spitzer. In this way, Spitzer acts as an extension of human vision to explore the universe, near and far.

What’s more, Spitzer doesn’t have to contend with Earth’s atmosphere, daily temperature variations or day-night cycles, unlike ground-based telescopes. With a mirror less than 1 meter in diameter, Spitzer in space is more sensitive than even a 10-meter-diameter telescope on Earth.

3. Spitzer was the first spacecraft to fly in an Earth-trailing orbit.

Rather than circling Earth, as Hubble does, Spitzer orbits the Sun on almost the same path as Earth. But Spitzer moves slower than Earth, so the spacecraft drifts farther away from our planet each year.

This “Earth-trailing orbit” has many advantages. Being farther from Earth than a satellite, it receives less heat from our planet and enjoys a naturally cooler environment. Spitzer also benefits from a wider view of the sky by orbiting the Sun. While its field of view changes throughout the year, at any given time it can see about one-third of the sky. Our Kepler space telescope, famous for finding thousands of exoplanets – planets outside our solar system – also settled in an Earth-trailing orbit six years after Spitzer.

4. Spitzer began in a “cold mission.”

Spitzer has far outlived its initial requirement of 2.5 years. The Spitzer team calls the first 5.5 years “the cold mission” because the spacecraft’s instruments were deliberately cooled down during that time. Liquid helium coolant kept Spitzer’s instruments just a few degrees above absolute zero (which is minus 459 degrees Fahrenheit, or minus 273 degrees Celsius) in this first part of the mission.

5. The “warm mission” was still pretty cold.

Spitzer entered what was called the “warm mission” when the 360 liters of liquid helium coolant that was chilling its instruments ran out in May 2009.

At the “warm” temperature of minus 405 Fahrenheit, two of Spitzer’s instruments – the Infrared Spectrograph (IRS) and Multiband Imaging Photometer (MIPS) – stopped working. But two of the four detector arrays in the Infrared Array Camera (IRAC) persisted. These “channels” of the camera have driven Spitzer’s explorations since then.

6. Spitzer wasn’t designed to study exoplanets, but made huge strides in this area.

Exoplanet science was in its infancy in 2003 when Spitzer launched, so the mission’s first scientists and engineers had no idea it could observe planets beyond our solar system. But the telescope’s accurate star-targeting system and the ability to control unwanted changes in temperature have made it a useful tool for studying exoplanets. During the Spitzer mission, engineers have learned how to control the spacecraft’s pointing more precisely to find and characterize exoplanets, too.

Using what’s called the “transit method,” Spitzer can stare at a star and detect periodic dips in brightness that happen when a planet crosses a star’s face. In one of its most remarkable achievements, Spitzer discovered three of the TRAPPIST-1 planets and confirmed that the system has seven Earth-sized planets orbiting an ultra-cool dwarf star. Spitzer data also helped scientists determine that all seven planets are rocky, and made these the best-understood exoplanets to date.

Spitzer can also use a technique called microlensing to find planets closer to the center of our galaxy. When a star passes in front of another star, the gravity of the first star can act as a lens, making the light from the more distant star appear brighter. Scientists are using microlensing to look for a blip in that brightening, which could mean that the foreground star has a planet orbiting it. Microlensing could not have been done early in the mission when Spitzer was closer to Earth, but now that the spacecraft is farther away, it has a better chance of measuring these events.

7. Spitzer is a window into the distant past.

The spacecraft has observed and helped discover some of the most distant objects in the universe, helping scientists understand where we came from. Originally, Spitzer’s camera designers had hoped the spacecraft would detect galaxies about 12 billion light-years away. In fact, Spitzer has surpassed that, and can see even farther back in time – almost to the beginning of the universe. In collaboration with Hubble, Spitzer helped characterize the galaxy GN-z11 about 13.4 billion light-years away, whose light has been traveling since 400 million years after the big bang. It is the farthest galaxy known.

8. Spitzer discovered Saturn’s largest ring.

Everyone knows Saturn has distinctive rings, but did you know its largest ring was only discovered in 2009, thanks to Spitzer? Because this outer ring doesn’t reflect much visible light, Earth-based telescopes would have a hard time seeing it. But Spitzer saw the infrared glow from the cool dust in the ring. It begins 3.7 million miles (6 million kilometers) from Saturn and extends about 7.4 million miles (12 million kilometers) beyond that.

9. The “Beyond Phase” pushes Spitzer to new limits.

In 2016, Spitzer entered its “Beyond phase,” with a name reflecting how the spacecraft operates beyond its original scope.

As Spitzer floats away from Earth, its increasing distance presents communication challenges. Engineers must point Spitzer’s antenna at higher angles toward the Sun in order to talk to our planet, which exposes the spacecraft to more heat. At the same time, the spacecraft’s solar panels receive less sunlight because they point away from the Sun, putting more stress on the battery.

The team decided to override some autonomous safety systems so Spitzer could continue to operate in this riskier mode. But so far, the Beyond phase is going smoothly.

10. Spitzer paves the way for future infrared telescopes.

Spitzer has identified areas of further study for our upcoming James Webb Space Telescope, planned to launch in 2021. Webb will also explore the universe in infrared light, picking up where Spitzer eventually will leave off. With its enhanced ability to probe planetary atmospheres, Webb may reveal striking new details about exoplanets that Spitzer found. Distant galaxies unveiled by Spitzer together with other telescopes will also be observed in further detail by Webb. The space telescope we are planning after that, WFIRST, will also investigate long-standing mysteries by looking at infrared light. Scientists planning studies with future infrared telescopes will naturally build upon the pioneering legacy of Spitzer.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE

Make sure to follow us on Tumblr for your regular dose of space: 

Solar System 10 Things: Dust in the Wind, on M…

To most of us, dust is an annoyance. Something to be cleaned up, washed off or wiped away. But these tiny particles that float about and settle on surfaces play an important role in a variety of processes on Earth and across the solar system. So put away that feather duster for a few moments, as we share with you 10 things to know about dust.


1. “Dust” Doesn’t Mean Dirty, it Means Tiny

Not all of what we call “dust” is made of the same stuff. Dust in your home generally consists of things like particles of sand and soil, pollen, dander (dead skin cells), pet hair, furniture fibers and cosmetics. But in space, dust can refer to any sort of fine particles smaller than a grain of sand. Dust is most commonly bits of rock or carbon-rich, soot-like grains, but in the outer solar system, far from the Sun’s warmth, it’s also common to find tiny grains of ice as well. Galaxies, including our Milky Way, contain giant clouds of fine dust that are light years across – the ingredients for future generations of planetary systems like ours.


2. Some Are Big, Some Are Small (and Big Ones Tend to Fall)

Dust grains come in a range of sizes, which affects their properties. Particles can be extremely tiny, from only a few tens of nanometers (mere billionths of a meter) wide, to nearly a millimeter wide. As you might expect, smaller dust grains are more easily lifted and pushed around, be it by winds or magnetic, electrical and gravitational forces. Even the gentle pressure of sunlight is enough to move smaller dust particles in space. Bigger particles tend to be heavier, and they settle out more easily under the influence of gravity.

For example, on Earth, powerful winds can whip up large amounts of dust into the atmosphere. While the smaller grains can be transported over great distances, the heavier particles generally sink back to the ground near their source. On Saturn’s moon Enceladus, jets of icy dust particles spray hundreds of miles up from the surface; the bigger particles are lofted only a few tens of miles (or kilometers) and fall back to the ground, while the finest particles escape the moon’s gravity and go into orbit around Saturn to create the planet’s E ring.



Generally speaking, the space between the planets is pretty empty, but not completely so. Particles cast off by comets and ground up bits of asteroids are found throughout the solar system. Take any volume of space half a mile (1 kilometer) on a side, and you’d average a few micron-sized particles (grains the thickness of a red blood cell).

Dust in the solar system was a lot more abundant in the past. There was a huge amount of it present as the planets began to coalesce out of the disk of material that formed the Sun. In fact, motes of dust gently sticking together were likely some of the earliest seeds of the planet-building process. But where did all that dust come from, originally? Some of it comes from stars like our Sun, which blow off their outer layers in their later years. But lots of it also comes from exploding stars, which blast huge amounts of dust and gas into space when they go boom.


4. From a Certain Point of View

Dust is easier to see from certain viewing angles. Tiny particles scatter light depending on how big their grains are. Larger particles tend to scatter light back in the direction from which it came, while very tiny particles tend to scatter light forward, more or less in the direction it was already going. Because of this property, structures like planetary rings made of the finest dusty particles are best viewed with the Sun illuminating them from behind. For example, Jupiter’s rings were only discovered after the Voyager 1 spacecraft passed by the planet, where it could look back and see them backlit by the Sun. You can see the same effect looking through a dusty windshield at sunset; when you face toward the Sun, the dust becomes much more apparent.


5. Dust Storms Are Common on Mars

Local dust storms occur frequently on Mars, and occasionally grow or merge to form regional systems, particularly during the southern spring and summer, when Mars is closest to the Sun. On rare occasions, regional storms produce a dust haze that encircles the planet and obscures surface features beneath. A few of these events may become truly global storms, such as one in 1971 that greeted the first spacecraft to orbit Mars, our Mariner 9. In mid-2018, a global dust storm enshrouded Mars, hiding much of the Red Planet’s surface from view and threatening the continued operation of our uber long-lived Opportunity rover. We’ve also seen global dust storms in 1977, 1982, 1994, 2001 and 2007.

Dust storms will likely present challenges for future astronauts on the Red Planet. Although the force of the wind on Mars is not as strong as portrayed in an early scene in the movie “The Martian,” dust lofted during storms could affect electronics and health, as well as the availability of solar energy.

6. Dust From the Sahara Goes Global

Earth’s largest, hottest desert is connected to its largest tropical rain forest by dust. The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rain forest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a dusty cloud rises in the air, stretches between the continents, and ties together the desert and the jungle.

This trans-continental journey of dust is important because of what is in the dust. Specifically, the dust picked up from the Bodélé Depression in Chad – an ancient lake bed where minerals composed of dead microorganisms are loaded with phosphorus. Phosphorus is an essential nutrient for plant proteins and growth, which the nutrient-poor Amazon rain forest depends on in order to flourish.


7. Rings and Things

The rings of the giant planets contain a variety of different dusty materials. Jupiter’s rings are made of fine rock dust. Saturn’s rings are mostly pure water ice, with a sprinkling of other materials. (Side note about Saturn’s rings: While most of the particles are boulder-sized, there’s also lots of fine dust, and some of the fainter rings are mostly dust with few or no large particles.) Dust in the rings of Uranus and Neptune is made of dark, sooty material, probably rich in carbon.

Over time, dust gets removed from ring systems due to a variety of processes. For example, some of the dust falls into the planet’s atmosphere, while some gets swept up by the planets’ magnetic fields, and other dust settles onto the surfaces of the moons and other ring particles. Larger particles eventually form new moons or get ground down and mixed with incoming material. This means rings can change a lot over time, so understanding how the tiniest ring particles are being moved about has bearing on the history, origins and future of the rings.


8. Moon Dust is Clingy and Might Make You Sick

So, dust is kind of a thing on the Moon. When the Apollo astronauts visited the Moon, they found that lunar dust quickly coated their spacesuits and was difficult to remove. It was quite abrasive, causing wear on their spacesuit fabrics, seals and faceplates. It also clogged mechanisms like the joints in spacesuit limbs, and interfered with fasteners like zippers and Velcro. The astronauts also noted that it had a distinctive, pungent odor, not unlike gunpowder, and it was an eye and lung irritant.

Many of these properties apparently can be explained by the fact that lunar dust particles are quite rough and jagged. While dust particles on Earth get tumbled and ground by the wind into smoother shapes, this sort of weathering doesn’t happen so much on the Moon. The roughness of Moon dust grains makes it very easy for them to cling to surfaces and scratch them up. It also means they’re not the sort of thing you would want to inhale, as their jagged edges could damage delicate tissues in the lung.


9. Dust is What Makes Comets So Pretty

Most comets are basically clods of dust, rock and ice. They spend most of their time far from the Sun, out in the refrigerated depths of the outer solar system, where they’re peacefully dormant. But when their orbits carry them closer to the Sun – that is, roughly inside the orbit of Jupiter – comets wake up. In response to warming temperatures, the ices on and near their surfaces begin to turn into gases, expanding outward and away from the comet, and creating focused jets of material in places. Dust gets carried away by this rapidly expanding gas, creating a fuzzy cloud around the comet’s nucleus called a coma. Some of the dust also is drawn out into a long trail – the comet’s tail.


10. We’re Not the Only Ones Who’re So Dusty

Dust in our solar system is continually replenished by comets whizzing past the Sun and the occasional asteroid collision, and it’s always being moved about, thanks to a variety of factors like the gravity of the planets and even the pressure of sunlight. Some of it even gets ejected from our solar system altogether.

With telescopes, we also observe dusty debris disks around many other stars. As in our own system, the dust in such disks should evolve over time, settling on planetary surfaces or being ejected, and this means the dust must be replenished in those star systems as well. So studying the dust in our planetary environs can tell us about other systems, and vice versa. Grains of dust from other planetary systems also pass through our neighborhood – a few spacecraft have actually captured and analyzed some them – offering us a tangible way to study material from other stars.

Read the full version of ‘Solar System: 10 Things to Know’ article HERE

Make sure to follow us on Tumblr for your regular dose of space:

Solar System: 10 Ways Interns Are Exploring Sp…

Simulating alien worlds, designing spacecraft with origami and using tiny fossils to understand the lives of ancient organisms are all in a day’s work for interns at NASA.

Here’s how interns are taking our missions and science farther.

1. Connecting Satellites in Space


Becca Foust looks as if she’s literally in space – or, at least, on a sci-fi movie set. She’s surrounded by black, except for the brilliant white comet model suspended behind her. Beneath the socks she donned just for this purpose, the black floor reflects the scene like perfectly still water across a lake as she describes what happens here: “We have five spacecraft simulators that ‘fly’ in a specially designed flat-floor facility,” she says. “The spacecraft simulators use air bearings to lift the robots off the floor, kind of like a reverse air hockey table. The top part of the spacecraft simulators can move up and down and rotate all around in a similar way to real satellites.” It’s here, in this test bed on the Caltech campus, that Foust is testing an algorithm she’s developing to autonomously assemble and disassemble satellites in space. “I like to call it space K’nex, like the toys. We’re using a bunch of component satellites and trying to figure out how to bring all of the pieces together and make them fit together in orbit,” she says. A NASA Space Technology Research Fellow, who splits her time between Caltech and NASA’s Jet Propulsion Laboratory (JPL), working with Soon-Jo Chung and Fred Hadaegh, respectively, Foust is currently earning her Ph.D. at the University of Illinois at Urbana-Champaign. She says of her fellowship, “I hope my research leads to smarter, more efficient satellite systems for in-space construction and assembly.”

2. Diving Deep on the Science of Alien Oceans


Three years ago, math and science were just subjects Kathy Vega taught her students as part of Teach for America. Vega, whose family emigrated from El Salvador, was the first in her family to go to college. She had always been interested in space and even dreamed about being an astronaut one day, but earned a degree in political science so she could get involved in issues affecting her community. But between teaching and encouraging her family to go into science, It was only a matter of time before she realized just how much she wanted to be in the STEM world herself. Now an intern at NASA JPL and in the middle of earning a second degree, this time in engineering physics, Vega is working on an experiment that will help scientists search for life beyond Earth. 

“My project is setting up an experiment to simulate possible ocean compositions that would exist on other worlds,” says Vega. Jupiter’s moon Europa and Saturn’s moon Enceladus, for example, are key targets in the search for life beyond Earth because they show evidence of global oceans and geologic activity. Those factors could allow life to thrive. JPL is already building a spacecraft designed to orbit Europa and planning for another to land on the icy moon’s surface. “Eventually, [this experiment] will help us prepare for the development of landers to go to Europa, Enceladus and another one of Saturn’s moons, Titan, to collect seismic measurements that we can compare to our simulated ones,” says Vega. “I feel as though I’m laying the foundation for these missions.”

3. Unfolding Views on Planets Beyond Our Solar System


“Origami is going to space now? This is amazing!” Chris Esquer-Rosas had been folding – and unfolding – origami since the fourth grade, carefully measuring the intricate patterns and angles produced by the folds and then creating new forms from what he’d learned. “Origami involves a lot of math. A lot of people don’t realize that. But what actually goes into it is lots of geometric shapes and angles that you have to account for,” says Esquer-Rosas. Until three years ago, the computer engineering student at San Bernardino College had no idea that his origami hobby would turn into an internship opportunity at NASA JPL. That is, until his long-time friend, fellow origami artist and JPL intern Robert Salazar connected him with the Starshade project. Starshade has been proposed as a way to suppress starlight that would otherwise drown out the light from planets outside our solar system so we can characterize them and even find out if they’re likely to support life. Making that happen requires some heavy origami – unfurling a precisely-designed, sunflower-shaped structure the size of a baseball diamond from a package about half the size of a pitcher’s mound. It’s Esquer-Rosas’ project this summer to make sure Starshade’s “petals” unfurl without a hitch. Says Esquer-Rosas, “[The interns] are on the front lines of testing out the hardware and making sure everything works. I feel as though we’re contributing a lot to how this thing is eventually going to deploy in space.”

4. Making Leaps in Extreme Robotics


Wheeled rovers may be the norm on Mars, but Sawyer Elliott thinks a different kind of rolling robot could be the Red Planet explorer of the future. This is Elliott’s second year as a fellow at NASA JPL, researching the use of a cube-shaped robot for maneuvering around extreme environments, like rocky slopes on Mars or places with very little gravity, like asteroids. A graduate student in aerospace engineering at Cornell University, Elliott spent his last stint at JPL developing and testing the feasibility of such a rover. “I started off working solely on the rover and looking at can we make this work in a real-world environment with actual gravity,” says Elliott. “It turns out we could.” So this summer, he’s been improving the controls that get it rolling or even hopping on command. In the future, Elliott hopes to keep his research rolling along as a fellow at JPL or another NASA center. “I’m only getting more and more interested as I go, so I guess that’s a good sign,” he says.

5. Starting from the Ground Up


Before the countdown to launch or the assembling of parts or the gathering of mission scientists and engineers, there are people like Joshua Gaston who are helping turn what’s little more than an idea into something more. As an intern with NASA JPL’s project formulation team, Gaston is helping pave the way for a mission concept that aims to send dozens of tiny satellites, called CubeSats, beyond Earth’s gravity to other bodies in the solar system. “This is sort of like step one,” says Gaston. “We have this idea and we need to figure out how to make it happen.” Gaston’s role is to analyze whether various CubeSat models can be outfitted with the needed science instruments and still make weight. Mass is an important consideration in mission planning because it affects everything from the cost to the launch vehicle to the ability to launch at all. Gaston, an aerospace engineering student at Tuskegee University, says of his project, “It seems like a small role, but at the same time, it’s kind of big. If you don’t know where things are going to go on your spacecraft or you don’t know how the spacecraft is going to look, it’s hard to even get the proposal selected.”

6. Finding Life on the Rocks


By putting tiny samples of fossils barely visible to the human eye through a chemical process, a team of NASA JPL scientists is revealing details about organisms that left their mark on Earth billions of years ago. Now, they have set their sights on studying the first samples returned from Mars in the future. But searching for signatures of life in such a rare and limited resource means the team will have to get the most science they can out of the smallest sample possible. That’s where Amanda Allen, an intern working with the team in JPL’s Astrobiogeochemistry, or abcLab, comes in. “Using the current, state-of-the-art method, you need a sample that’s 10 times larger than we’re aiming for,” says Allen, an Earth science undergraduate at the University of California, San Diego, who is doing her fifth internship at JPL. “I’m trying to get a different method to work.” Allen, who was involved in theater and costume design before deciding to pursue Earth science, says her “superpower” has always been her ability to find things. “If there’s something cool to find on Mars related to astrobiology, I think I can help with that,” she says.

7. Taking Space Flight Farther


If everything goes as planned and a thruster like the one Camille V. Yoke is working on eventually helps send astronauts to Mars, she’ll probably be first in line to play the Mark Watney role. “I’m a fan of the Mark Watney style of life [in “The Martian”], where you’re stranded on a planet somewhere and the only thing between you and death is your own ability to work through problems and engineer things on a shoestring,” says Yoke. A physics major at the University of South Carolina, Yoke is interning with a team that’s developing a next-generation electric thruster designed to accelerate spacecraft more efficiently through the solar system. “Today there was a brief period in which I knew something that nobody else on the planet knew – for 20 minutes before I went and told my boss,” says Yoke. “You feel like you’re contributing when you know that you have discovered something new.”

8. Searching for Life Beyond Our Solar System


Without the option to travel thousands or even tens of light-years from Earth in a single lifetime, scientists hoping to discover signs of life on planets outside our solar system, called exoplanets, are instead creating their own right here on Earth. This is Tre’Shunda James’ second summer simulating alien worlds as an intern at NASA JPL. Using an algorithm developed by her mentor, Renyu Hu, James makes small changes to the atmospheric makeup of theoretical worlds and analyzes whether the combination creates a habitable environment. “This model is a theoretical basis that we can apply to many exoplanets that are discovered,” says James, a chemistry and physics major at Occidental College in Los Angeles. “In that way, it’s really pushing the field forward in terms of finding out if life could exist on these planets.” James, who recently became a first-time co-author on a scientific paper about the team’s findings, says she feels as though she’s contributing to furthering the search for life beyond Earth while also bringing diversity to her field. “I feel like just being here, exploring this field, is pushing the boundaries, and I’m excited about that.”

9. Spinning Up a Mars Helicopter


Chloeleen Mena’s role on the Mars Helicopter project may be small, but so is the helicopter designed to make the first flight on the Red Planet. Mena, an electrical engineering student at Embry-Riddle Aeronautical University, started her NASA JPL internship just days after NASA announced that the helicopter, which had been in development at JPL for nearly five years, would be going to the Red Planet aboard the Mars 2020 rover. This summer, Mena is helping test a part needed to deploy the helicopter from the rover once it lands on Mars, as well as writing procedures for future tests. “Even though my tasks are relatively small, it’s part of a bigger whole,” she says.

10. Preparing to See the Unseen on Jupiter’s Moon Europa


In the 2020s, we’re planning to send a spacecraft to the next frontier in the search for life beyond Earth: Jupiter’s moon Europa. Swathed in ice that’s intersected by deep reddish gashes, Europa has unveiled intriguing clues about what might lie beneath its surface – including a global ocean that could be hospitable to life. Knowing for sure hinges on a radar instrument that will fly aboard the Europa Clipper orbiter to peer below the ice with a sort of X-ray vision and scout locations to set down a potential future lander. To make sure everything works as planned, NASA JPL intern Zachary Luppen is creating software to test key components of the radar instrument. “Whatever we need to do to make sure it operates perfectly during the mission,” says Luppen. In addition to helping things run smoothly, the astronomy and physics major says he hopes to play a role in answering one of humanity’s biggest questions. “Contributing to the mission is great in itself,” says Luppen. “But also just trying to make as many people aware as possible that this science is going on, that it’s worth doing and worth finding out, especially if we were to eventually find life on Europa. That changes humanity forever!”

Read the full web version of this week’s ‘Solar System: 10 Things to Know” article HERE

Make sure to follow us on Tumblr for your regular dose of space:

For scientists watching the Red Planet from ou…

For scientists watching the Red Planet from our orbiters, the past month has been a windfall. “Global” dust storms, where a runaway series of storms create a dust cloud so large they envelop the planet, only appear every six to eight years (that’s 3-4 Mars years). Scientists still don’t understand why or how exactly these storms form and evolve.

Read the full story HERE

Make sure to follow us on Tumblr for your regular dose of space:  

5 Examples of How Our Satellite Data is Helpin…

We could talk all day about how our satellite data is crucial for Earth science…tracking ocean currents, monitoring natural disasters, soil mapping – the list goes on and on.

But did you know there is another way this data can improve life here on Earth?


Our satellite data can be used to build businesses and commercial products – but finding and using this data has been a daunting task for many potential users because it’s been stored across dozens of websites.

Until now.

Our Technology Transfer program has just released their solution to make finding data easier, called The NASA Remote Sensing Toolkit (RST).


RST offers an all-in-one approach to finding and using our Earth Science data, the tools needed to analyze it, and software to build your own tools.  

Before, we had our petabytes on petabytes of information spread out across dozens of websites – not to mention the various software tools needed to interpret the data. 


Now, RST helps users find everything they need while having only one browser open.

Feeling inspired to innovate with our data? Here are just a few examples of how other companies have taken satellite data and turned it into products, known as NASA spinoffs, that are helping our planet today.

1. Bringing Landscape into Focus


We have a number of imaging systems for locating fires, but none were capable of identifying small fires or indicating the flames’ intensity. Thanks to a series of Small Business Innovation Research (SBIR) contracts between our Ames Research Center and Xiomas Technologies LLC, the Wide Area Imager aerial scanner does just that. While we and the U.S. Forest Service use it for fire detection, the tool is also being used by municipalities for detailed aerial surveillance projects.

2. Monitoring the Nation’s Forests with the Help of Our Satellites


Have you ever thought about the long-term effects of natural disasters, such as hurricanes, on forest life? How about the big-time damage caused by little pests, like webworms? 

Our Stennis Space Center did, along with multiple forest services and environmental threat assessment centers. They partnered to create an early warning system to identify, characterize, and track disturbances from potential forest threats using our satellite data. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.

3. Informing Forecasts of Crop Growth


Want to hear a corny story?

Every year Stennis teams up with the U.S. Department of Agriculture to host a program called Ag 20/20 to utilize remote sensing technology for operational use in agricultural crop management practices at the level of individual farms.
During Ag 20/20 in 2000, an engineering contractor developed models for using our satellite data to predict corn crop yield. The model was eventually sold to Genscape Inc., which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.

4. Water Mapping Technology Rebuilds Lives in Arid Regions


No joking around here. Lives depend on the ability to find precious water in areas with little of it.  

Using our Landsat satellite and other topographical data, Radar Technologies International developed an algorithm-based software program that can locate underground water sources. Working with international organizations and governments, the firm is helping to provide water for refugees and other people in drought-stricken regions such as Kenya, Sudan, and Afghanistan.

5. Satellite Maps Deliver More Realistic Gaming


Are you more of the creative type? This last entry used satellite data to help people really get into their gameplay.

When Electronic Arts (EA) decided to make SSX, a snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was our ASTER Global Digital Elevation Map, made available by our Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.

You can browse our Remote Sensing Toolkit at

Want to know more about future tutorial webinars on RST?

Follow our Technology Transfer Program on twitter @NASAsolutions for the latest updates.

Want to learn more about the products made by NASA technologies? Head over to

Sign up to receive updates about upcoming tutorials HERE.

Make sure to follow us on Tumblr for your regular dose of space:  

Solar System 10 Things: Two Years of Juno at J…

Our Juno mission arrived at the King of Planets in July 2016. The intrepid robotic explorer has been revealing Jupiter’s secrets ever since. 

Here are 10 historic Juno mission highlights:


1. Arrival at a Colossus

After an odyssey of almost five years and 1.7 billion miles (2.7 billion kilometers), our Juno spacecraft fired its main engine to enter orbit around Jupiter on July 4, 2016. Juno, with its suite of nine science instruments, was the first spacecraft to orbit the giant planet since the Galileo mission in the 1990s. It would be the first mission to make repeated excursions close to the cloud tops, deep inside the planet’s powerful radiation belts.


2. Science, Meet Art

Juno carries a color camera called JunoCam. In a remarkable first for a deep space mission, the Juno team reached out to the general public not only to help plan which pictures JunoCam would take, but also to process and enhance the resulting visual data. The results include some of the most beautiful images in the history of space exploration.


3. A Whole New Jupiter

It didn’t take long for Juno—and the science teams who hungrily consumed the data it sent home—to turn theories about how Jupiter works inside out. Among the early findings: Jupiter’s poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together. Jupiter’s iconic belts and zones were surprising, with the belt near the equator penetrating far beneath the clouds, and the belts and zones at other latitudes seeming to evolve to other structures below the surface.

4. The Ultimate Classroom

The Goldstone Apple Valley Radio Telescope (GAVRT) project, a collaboration among NASA, JPL and the Lewis Center for Educational Research, lets students do real science with a large radio telescope. GAVRT data includes Jupiter observations relevant to Juno, and Juno scientists collaborate with the students and their teachers.


5. Spotting the Spot

Measuring in at 10,159 miles (16,350 kilometers) in width (as of April 3, 2017) Jupiter’s Great Red Spot is 1.3 times as wide as Earth. The storm has been monitored since 1830 and has possibly existed for more than 350 years. In modern times, the Great Red Spot has appeared to be shrinking. In July 2017, Juno passed directly over the spot, and JunoCam images revealed a tangle of dark, veinous clouds weaving their way through a massive crimson oval.

“For hundreds of years scientists have been observing, wondering and theorizing about Jupiter’s Great Red Spot,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Now we have the best pictures ever of this iconic storm. It will take us some time to analyze all the data from not only JunoCam, but Juno’s eight science instruments, to shed some new light on the past, present and future of the Great Red Spot.”


6. Beauty Runs Deep

Data collected by the Juno spacecraft during its first pass over Jupiter’s Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. The solar system’s most famous storm appears to have roots that penetrate about 200 miles (300 kilometers) into the planet’s atmosphere.


7. Powerful Auroras, Powerful Mysteries

Scientists on the Juno mission observed massive amounts of energy swirling over Jupiter’s polar regions that contribute to the giant planet’s powerful auroras – only not in ways the researchers expected. Examining data collected by the ultraviolet spectrograph and energetic-particle detector instruments aboard Juno, scientists observed signatures of powerful electric potentials, aligned with Jupiter’s magnetic field, that accelerate electrons toward the Jovian atmosphere at energies up to 400,000 electron volts. This is 10 to 30 times higher than the largest such auroral potentials observed at Earth. 

Jupiter has the most powerful auroras in the solar system, so the team was not surprised that electric potentials play a role in their generation. What puzzled the researchers is that despite the magnitudes of these potentials at Jupiter, they are observed only sometimes and are not the source of the most intense auroras, as they are at Earth.

8. Heat from Within

Juno scientists shared a 3D infrared movie depicting densely packed cyclones and anticyclones that permeate the planet’s polar regions, and the first detailed view of a dynamo, or engine, powering the magnetic field for any planet beyond Earth (video above). Juno mission scientists took data collected by the spacecraft’s Jovian InfraRed Auroral Mapper (JIRAM) instrument and generated a 3D fly-around of the Jovian world’s north pole. 

Imaging in the infrared part of the spectrum, JIRAM captures light emerging from deep inside Jupiter equally well, night or day. The instrument probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter’s cloud tops.


9. A Highly Charged Atmosphere

Powerful bolts of lightning light up Jupiter’s clouds. In some ways its lightning is just like what we’re used to on Earth. In other ways,it’s very different. For example, most of Earth’s lightning strikes near the equator; on Jupiter, it’s mostly around the poles.


10. Extra Innings

In June, we approved an update to Juno’s science operations until July 2021. This provides for an additional 41 months in orbit around. Juno is in 53-day orbits rather than 14-day orbits as initially planned because of a concern about valves on the spacecraft’s fuel system. This longer orbit means that it will take more time to collect the needed science data, but an independent panel of experts confirmed that Juno is on track to achieve its science objectives and is already returning spectacular results. The spacecraft and all its instruments are healthy and operating nominally. ​

Read the full web version of this week’s ‘Solar System: 10 Things to Know’ article HERE

For regular updates, follow NASA Solar System on Twitter and Facebook

Make sure to follow us on Tumblr for your regular dose of space:

10 Things to Know: Massive Dust Storm on Mars

Massive Martian dust storms have been challenging—and enticing—scientists for decades. Here’s the scoop on Martian dust:


1: Challenging Opportunity

Our Opportunity rover is facing one of the greatest challenges of its 14 ½ year mission on the surface of Mars–a massive dust storm that has turned day to night. Opportunity is currently hunkered down on Mars near the center of a storm bigger than North America and Russia combined. The dust-induced darkness means the solar-powered rover can’t recharge its batteries.


2: One Tough Robot

This isn’t the first time Opportunity has had to wait out a massive storm. In 2007, a monthlong series of severe storms filled the Martian skies with dust. Power levels reached critical lows, but engineers nursed the rover back to health when sunlight returned.


3: Windswept

Martian breezes proved a saving grace for the solar-powered Mars rovers in the past, sweeping away accumulated dust and enabling rovers to recharge and get back to science. This is Opportunity in 2014. The image on the left is from January 2014. The image on the right in March 2014.


4: Dusty Disappointment

Back in 1971, scientists were eager for their first orbital views of Mars. But when Mariner 9 arrived in orbit, the Red Planet was engulfed by a global dust storm that hid most of the surface for a month. When the dust settled, geologists got detailed views of the Martian surface, including the first glimpses of ancient riverbeds carved into the dry and dusty landscape.


5: Dramatic License

As bad as the massive storm sounds, Mars isn’t capable of generating the strong winds that stranded actor Matt Damon’s character on the Red Planet in the movie The Martian. Mars’ atmosphere is too thin and winds are more breezy than brutal. The chore of cleaning dusty solar panels to maintain power levels, however, could be a very real job for future human explorers.


6: Semi-Regular Visitors

Scientists know to expect big dust storms on Mars, but the rapid development of the current one is surprising. Decades of Mars observations show a pattern of regional dust storms arising in northern spring and summer. In most Martian years, nearly twice as long as Earth years, the storms dissipate. But we’ve seen global dust storms in 1971, 1977, 1982, 1994, 2001 and 2007. The current storm season could last into 2019.


7: Science in the Dust

Dust is hard on machines, but can be a boon to science. A study of the 2007 storm published earlier this year suggests such storms play a role in the ongoing process of gas escaping from the top of Mars’ atmosphere. That process long ago transformed wetter, warmer ancient Mars into today’s arid, frozen planet. Three of our orbiters, the Curiosity rover and international partners are already in position to study the 2018 storm.


8: Adjusting InSight

Mission controllers for Mars InSight lander–due to land on Mars in November–will be closely monitoring the storm in case the spacecraft’s landing parameters need to be adjusted for safety. 

Once on the Red Planet, InSight will use sophisticated geophysical instruments to delve deep beneath the surface of Mars, detecting the fingerprints of the processes of terrestrial planet formation, as well as measuring the planet’s “vital signs”: Its “pulse” (seismology), “temperature” (heat flow probe), and “reflexes” (precision tracking).


9: Martian Weather Report

One saving grace of dust storms is that they can actually limit the extreme temperature swings experienced on the Martian surface. The same swirling dust that blocks out sunlight also absorbs heat, raising the ambient temperature surrounding Opportunity.

Track the storm and check the weather on Mars anytime.


10: Dust: Not Just a Martian Thing

A dust storm in the Sahara can change the skies in Miami and temperatures in the North Atlantic. Earth scientists keep close watch on our home planet’s dust storms, which can darken skies and alter Earth’s climate patterns.

Read the full web version of this article HERE

Make sure to follow us on Tumblr for your regular dose of space:

9 Ocean Facts You Likely Don’t Know, but Shoul…

Earth is a place dominated by water, mainly oceans. It’s also a place our researchers study to understand life. Trillions of gallons of water flow freely across the surface of our blue-green planet. Ocean’s vibrant ecosystems impact our lives in many ways. 

In celebration of World Oceans Day, here are a few things you might not know about these complex waterways.

1. Why is the ocean blue? 


The way light is absorbed and scattered throughout the ocean determines which colors it takes on. Red, orange, yellow,and green light are absorbed quickly beneath the surface, leaving blue light to be scattered and reflected back. This causes us to see various blue and violet hues.

2. Want a good fishing spot? 


Follow the phytoplankton! These small plant-like organisms are the beginning of the food web for most of the ocean. As phytoplankton grow and multiply, they are eaten by zooplankton, small fish and other animals. Larger animals then eat the smaller ones. The fishing industry identifies good spots by using ocean color images to locate areas rich in phytoplankton. Phytoplankton, as revealed by ocean color, frequently show scientists where ocean currents provide nutrients for plant growth.

3. The ocean is many colors. 


When we look at the ocean from space, we see many different shades of blue. Using instruments that are more sensitive than the human eye, we can measure carefully the fantastic array of colors of the ocean. Different colors may reveal the presence and amount of phytoplankton, sediments and dissolved organic matter.

4. The ocean can be a dark place. 

About 70 percent of the planet is ocean, with an average depth of more than 12,400 feet. Given that light doesn’t penetrate much deeper than 330 feet below the water’s surface (in the clearest water), most of our planet is in a perpetual state of darkness. Although dark, this part of the ocean still supports many forms of life, some of which are fed by sinking phytoplankton

5. We study all aspects of ocean life. 


Instruments on satellites in space, hundreds of kilometers above us, can measure many things about the sea: surface winds, sea surface temperature, water color, wave height, and height of the ocean surface.

6. In a gallon of average sea water, there is about ½ cup of salt. 


The amount of salt varies depending on location. The Atlantic Ocean is saltier than the Pacific Ocean, for instance. Most of the salt in the ocean is the same kind of salt we put on our food: sodium chloride.

7. A single drop of sea water is teeming with life.  


It will most likely have millions (yes, millions!) of bacteria and viruses, thousands of phytoplankton cells, and even some fish eggs, baby crabs, and small worms. 

8. Where does Earth store freshwater? 


Just 3.5 percent of Earth’s water is fresh—that is, with few salts in it. You can find Earth’s freshwater in our lakes, rivers, and streams, but don’t forget groundwater and glaciers. Over 68 percent of Earth’s freshwater is locked up in ice and glaciers. And another 30 percent is in groundwater. 

9. Phytoplankton are the “lungs of the ocean”.


Just like forests are considered the “lungs of the earth”, phytoplankton is known for providing the same service in the ocean! They consume carbon dioxide, dissolved in the sunlit portion of the ocean, and produce about half of the world’s oxygen. 

Want to learn more about how we study the ocean? Follow @NASAEarth on twitter.

Make sure to follow us on Tumblr for your regular dose of space:  

Two Steps Forward in the Search for Life on Ma…

We haven’t found aliens but we are a little further along in our search for life on Mars thanks to two recent discoveries from our Curiosity Rover.


We detected organic molecules at the harsh surface of Mars! And what’s important about this is we now have a lot more certainty that there’s organic molecules preserved at the surface of Mars. We didn’t know that before.

One of the discoveries is we found organic molecules just beneath the surface of Mars in 3 billion-year-old sedimentary rocks.


Second, we’ve found seasonal variations in methane levels in the atmosphere over 3 Mars years (nearly 6 Earth years). These two discoveries increase the chances that the record of habitability and potential life has been preserved on the Red Planet despite extremely harsh conditions on the surface.


Both discoveries were made by our chem lab that rides aboard the Curiosity rover on Mars.


Here’s an image from when we installed the SAM lab on the rover. SAM stands for “Sample Analysis at Mars” and SAM did two things on Mars for this discovery.

One – it tested Martian rocks. After the arm selects a sample of pulverized rock, it heats up that sample and sends that gas into the chamber, where the electron stream breaks up the chemicals so they can be analyzed.

What SAM found are fragments of large organic molecules preserved in ancient rocks which we think come from the bottom of an ancient Martian lake. These organic molecules are made up of carbon and hydrogen, and can include other elements like nitrogen and oxygen. That’s a possible indicator of ancient life…although non-biological processes can make organic molecules, too.

The other action SAM did was ‘sniff’ the air.


When it did that, it detected methane in the air. And for the first time, we saw a repeatable pattern of methane in the Martian atmosphere. The methane peaked in the warm, summer months, and then dropped in the cooler, winter months.


On Earth, 90 percent of methane is produced by biology, so we have to consider the possibility that Martian methane could be produced by life under the surface. But it also could be produced by non-biological sources. Right now, we don’t know, so we need to keep studying the Mars!


One of our upcoming Martian missions is the InSight lander. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is a Mars lander designed to give the Red Planet its first thorough checkup since it formed 4.5 billion years ago. It is the first outer space robotic explorer to study in-depth the “inner space” of Mars: its crust, mantle, and core.

Finding methane in the atmosphere and ancient carbon preserved on the surface gives scientists confidence that our Mars 2020 rover and ESA’s (European Space Agency’s) ExoMars rover will find even more organics, both on the surface and in the shallow subsurface.

Read the full release on today’s announcement HERE

Make sure to follow us on Tumblr for your regular dose of space: