Category: moon

Photo

Photo

Happy #MoonDay! To celebrate the 49th annivers…

Happy #MoonDay! To celebrate the 49th
anniversary of Apollo 11 landing on the Moon, we present you with “Moonlight,”
a video by our Goddard science visualizer Ernie Wright set to Debussy’s Clair
de Lune. The Apollo missions were a landmark in lunar exploration. The visit
and the samples that our Moon walkers collected transformed our understanding
of the Moon and the solar system. Now, our Lunar Reconnaissance Orbiter’s
high-resolution data gives an incredibly detailed view of our closest neighbor.

This
visualization captures the mood of Claude Debussy’s best-known composition,
Clair de Lune (which means moonlight in French). The piece was
published in 1905 as the third of four movements in the composer’s Suite
Bergamasque, and unlike the other parts of this work, Clair is quiet,
contemplative, and slightly melancholy, evoking the feeling of a solitary walk
through a moonlit garden.

“Moonlight” uses a digital 3D model of the Moon built
from Lunar Reconnaissance Orbiter global elevation maps and image mosaics. The
lighting is derived from actual Sun angles during lunar days in 2018. Enjoy and
read more HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Happy 4th of July… From Space!

In Hollywood blockbusters, explosions and eruptions are often among the stars of the show. In space, explosions, eruptions and twinkling of actual stars are a focus for scientists who hope to better understand their births, lives, deaths and how they interact with their surroundings. Spend some of your Fourth of July taking a look at these celestial phenomenon:

image

Credit: NASA/Chandra X-ray Observatory

An Astral Exhibition

This object became a sensation in the astronomical community when a team of researchers pointed at it with our Chandra X-ray Observatory telescope in 1901, noting that it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite it as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.

image

Credit: NASA/Hubble Space Telescope

A Twinkling Tapestry

The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display. The sparkling centerpiece is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground located 20,000 light-years away from Earth in the constellation Carina.

image

Credit: NASA/THEMIS/Sebastian Saarloos

An Illuminating Aurora

Sometimes during solar magnetic events, solar explosions hurl clouds of magnetized particles into space. Traveling more than a million miles per hour, these coronal mass ejections, or CMEs, made up of hot material called plasma take up to three days to reach Earth. Spacecraft and satellites in the path of CMEs can experience glitches as these plasma clouds pass by. In near-Earth space, magnetic reconnection incites explosions of energy driving charged solar particles to collide with atoms in Earth’s upper atmosphere. We see these collisions near Earth’s polar regions as the aurora. Three spacecraft from our Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, observed these outbursts known as substorms.

image

Credit: NASA/Hubble Space Telescope//ESA/STScI

A Shining Supermassive Merger

Every galaxy has a black hole at its center. Usually they are quiet, without gas accretions, like the one in our Milky Way. But if a star creeps too close to the black hole, the gravitational tides can rip away the star’s gaseous matter. Like water spinning around a drain, the gas swirls into a disk around the black hole at such speeds that it heats to millions of degrees. As an inner ring of gas spins into the black hole, gas particles shoot outward from the black hole’s polar regions. Like bullets shot from a rifle, they zoom through the jets at velocities close to the speed of light. Astronomers using our Hubble Space Telescope observed correlations between supermassive black holes and an event similar to tidal disruption, pictured above in the Centaurus A galaxy. 

image

Credit: NASA/Hubble Space Telescope/ESA

A Stellar Explosion

Supernovae can occur one of two ways. The first occurs when a white dwarf—the remains of a dead star—passes so close to a living star that its matter leaks into the white dwarf. This causes a catastrophic explosion. However most people understand supernovae as the death of a massive star. When the star runs out of fuel toward the end of its life, the gravity at its heart sucks the surrounding mass into its center. At the turn of the 19th century, the binary star system Eta Carinae was faint and undistinguished. Our Hubble Telescope captured this image of Eta Carinae, binary star system. The larger of the two stars in the Eta Carinae system is a huge and unstable star that is nearing the end of its life, and the event that the 19th century astronomers observed was a stellar near-death experience. Scientists call these outbursts supernova impostor events, because they appear similar to supernovae but stop just short of destroying their star.

image

Credit: NASA/GSFC/SDO

An Eye-Catching Eruption

Extremely energetic objects permeate the universe. But close to home, the Sun produces its own dazzling lightshow, producing the largest explosions in our solar system and driving powerful solar storms.. When solar activity contorts and realigns the Sun’s magnetic fields, vast amounts of energy can be driven into space. This phenomenon can create a sudden flash of light—a solar flare.The above picture features a filament eruption on the Sun, accompanied by solar flares captured by our Solar Dynamics Observatory.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

What’s Up – July 2018

What’s Up for July?

Mars is closest to Earth since 2003!

image

July’s night skies feature Mars opposition on the 27th, when Mars, Earth, and the Sun all line up, and Mars’ closest approach to Earth since 2003 on the 31st. 

image

If you’ve been sky watching for 15 years or more, then you’ll remember August 2003, when Mars approached closer to Earth than it had for thousands of years.

image

It was a very small percentage closer, but not so much that it was as big as the moon as some claimed.   

image

Astronomy clubs everywhere had long lines of people looking through their telescopes at the red planet, and they will again this month!

image

 If you are new to stargazing, this month and next will be a great time to check out Mars. 

image

Through a telescope, you should be able to make out some of the light and dark features, and sometimes polar ice. Right now, though, a huge Martian dust storm is obscuring many features, and less planetary detail is visible.

image

July 27th is Mars opposition, when Mars, Earth, and the Sun all line up, with Earth directly in the middle.

image

A few days later on July 31st is Mars’ closest approach. That’s when Mars and Earth are nearest to each other in their orbits around the Sun. Although there will be a lot of news focusing on one or the other of these two dates, Mars will be visible for many months.

image

By the end of July, Mars will be visible at sunset.

image

But the best time to view it is several hours after sunset, when Mars will appear higher in the sky.

image

Mars will still be visible after July and August, but each month it will shrink in apparent size as it travels farther from Earth in its orbit around the Sun.

image

On July 27th a total lunar eclipse will be visible in Australia, Asia, Africa, Europe and South America.

image

For those viewers, Mars will be right next to the eclipsing moon!

image

Next month will feature August’s summer Perseids. It’s not too soon to plan a dark sky getaway for the most popular meteor shower of the year! 

Watch the full What’s Up for July Video:

There are so many
sights to see in the sky. To stay informed, subscribe to our What’s Up video
series on Facebook
.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Photo

Photo

10 Things: Calling All Pluto Lovers

June 22 marks the 40th anniversary of Charon’s discovery—the dwarf planet Pluto’s largest and first known moon. While the definition of a planet is the subject of vigorous scientific debate, this dwarf planet is a fascinating world to explore. Get to know Pluto’s beautiful, fascinating companion this week.

1. A Happy Accident

image

Astronomers James Christy and Robert Harrington weren’t even looking for satellites of Pluto when they discovered Charon in June 1978 at the U.S. Naval Observatory Flagstaff Station in Arizona – only about six miles from where Pluto was discovered at Lowell Observatory. Instead, they were trying to refine Pluto’s orbit around the Sun when sharp-eyed Christy noticed images of Pluto were strangely elongated; a blob seemed to move around Pluto. 

The direction of elongation cycled back and forth over 6.39 days―the same as Pluto’s rotation period. Searching through their archives of Pluto images taken years before, Christy then found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto.

2. Forever and Always

image

Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto’s underworld. But Christy also chose it for a more personal reason: The first four letters matched the name of his wife, Charlene. (Cue the collective sigh.)

3. Big Little Moon

image

Charon—the largest of Pluto’s five moons and approximately the size of Texas—is almost half the size of Pluto itself. The little moon is so big that Pluto and Charon are sometimes referred to as a double dwarf planet system. The distance between them is 12,200 miles (19,640 kilometers).

4. A Colorful and Violent History

image

Many scientists on the New Horizons mission expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more. High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14 and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator.

5. Grander Canyon

image

This great canyon system stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and likely around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.

6. Officially Official

image

In April 2018, the International Astronomical Union—the internationally recognized authority for naming celestial bodies and their surface features—approved a dozen names for Charon’s features proposed by our New Horizons mission team. Many of the names focus on the literature and mythology of exploration.

7. Flying Over Charon

This flyover video of Charon was created thanks to images from our New Horizons spacecraft. The “flight” starts with the informally named Mordor (dark) region near Charon’s north pole. Then the camera moves south to a vast chasm, descending to just 40 miles (60 kilometers) above the surface to fly through the canyon system.

8. Strikingly Different Worlds

image

This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by New Horizons as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain.

9. Quality Facetime

image

Charon neither rises nor sets, but hovers over the same spot on Pluto’s surface, and the same side of Charon always faces Pluto―a phenomenon called mutual tidal locking.

10. Shine On, Charon

image

Bathed in “Plutoshine,” this image from New Horizons shows the night side of Charon against a star field lit by faint, reflected light from Pluto itself on July 15, 2015.

Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Photo

Photo

Photo

Photo

One day we’ll ride on those lunar dunes again.

One day we’ll ride on those lunar dunes again.

Photo

Photo