Category: launch

Parker Solar Probe is Go for Launch

Tomorrow, Aug. 11, we’re launching a spacecraft to touch the Sun.

image

The first chance to launch Parker Solar Probe is 3:33 a.m. EDT on Aug. 11 from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Launch coverage on NASA TV starts at 3 a.m. EDT at nasa.gov/live.

After launch, Parker Solar Probe begins its daring journey to the Sun’s atmosphere, or corona, going closer to the Sun than any spacecraft in history and facing brutal heat and radiation.

Though Parker Solar Probe weighs a mere 1,400 pounds — pretty light for a spacecraft — it’s launching aboard one of the world’s most powerful rockets, a United Launch Alliance Delta IV Heavy with a third stage added.

image

Even though you might think the Sun’s massive means things would just fall into it, it’s surprisingly difficult to actually go there.
Any object leaving Earth starts off traveling at about 67,000 miles per
hour, same as Earth — and most of that is in a sideways direction, so
you have to shed most of that sideways speed to make it to the Sun. All
that means that it takes 55 times more launch energy to go to the Sun
than it does to go to Mars. On top of its powerful launch vehicle,
Parker Solar Probe will use seven Venus gravity assists to shed sideways
speed.

Even though Parker Solar Probe will lose a lot of sideways speed, it’ll still be going incredibly fast as its orbit draws closer to the Sun throughout its seven-year mission. At its fastest, Parker Solar Probe will travel at 430,000 miles per hour — fast enough to get from Philadelphia to Washington, D.C. in one second — setting the record for the fastest spacecraft in history.

image

But the real challenge was to keep the spacecraft from frying once it got there.

We’ve always wanted to send a mission to the corona, but we literally haven’t had the technology that can protect a spacecraft and its instruments from its scorching heat. Only recent advances have enabled engineers to build a heat shield that will protect the spacecraft on this journey of extremes — a tricky feat that requires withstanding the Sun’s intense radiation on the front and staying cool at the back, so the spacecraft and instruments can work properly.

image

The 4.5-inches-thick heat shield is built like a sandwich. There’s a
thin layer of carbon material like you might find in your golf clubs or
tennis rackets, carbon foam, and then another thin piece of
carbon-carbon on the back. Even while the Sun-facing side broils at
2,500 degrees Fahrenheit, the back of the shield will remain a balmy 85
degrees — just above room temperature. There are so few particles in
this region that it’s a vacuum, so blocking the Sun’s radiation goes a
long way towards keeping the spacecraft cool.

Parker Solar Probe is also our first mission to be named after a living individual: Dr. Eugene Parker, famed solar physicist who in 1958 first predicted the existence of the solar wind.

image

“Solar wind” is what Dr. Parker dubbed the stream of charged particles that flows constantly from the Sun, bathing Earth and our entire solar system in the Sun’s magnetic fields. Parker Solar Probe’s flight right through the corona allows it to observe the birth of the very solar wind that Dr. Parker predicted, right as it speeds up and over the speed of sound.  

image

The corona is where solar material is heated to millions of degrees and where the most extreme eruptions on the Sun occur, like solar flares and coronal mass ejections, which fling particles out to space at incredible speeds near the speed of light. These explosions can also spark space weather storms near Earth that can endanger satellites and astronauts, disrupt radio communications and, at their most severe, trigger power outages.

image

Thanks to Parker Solar Probe’s landmark mission, solar scientists will be able to see the objects of their study up close and personal for the very first time.

Up until now, all of our studies of the corona have been remote — that is, taken from a distance, rather than at the mysterious region itself. Scientists have been very creative to glean as much as possible from their remote data, but there’s nothing like actually sending a probe to the corona to see what’s going on.

image

And scientists aren’t the only ones along for the adventure — Parker Solar Probe holds a microchip carrying the names of more than 1.1 million people who signed up to send their name to the Sun. This summer, these names and 1,400 pounds of science equipment begin their journey to the center of our solar system.

Three months later in November 2018, Parker Solar Probe makes its first close approach to the Sun, and in December, it will send back the data. The corona is one of the last places in the solar system where no spacecraft has visited before; each observation Parker Solar Probe makes is a potential discovery.

Stay tuned — Parker Solar Probe is about to take flight.

Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

5 Reasons our Space Launch System is the Backb…

Our Space Launch
System
(SLS) will be the world’s most powerful rocket, engineered to carry
astronauts and cargo farther and faster than any rocket ever built. Here are
five reasons it is the backbone of bold, deep space exploration missions.

image

5. We’re Building This Rocket to Take Humans to the Moon and Beyond

The SLS rocket is a national asset for leading new missions to deep
space. More than 1,000 large and small
companies in 44 states
are building the rocket that will take humans to
the Moon.
Work on SLS has an economic impact of $5.7 billion and
generates 32,000 jobs. Small businesses across the U.S. supply 40 percent of
the raw materials for the rocket. An investment in SLS is an investment in
human spaceflight and in American industry and will lead to applications beyond
NASA.

image

4. This Rocket is Built for Humans

Modern deep space systems are designed and built to keep humans safe
from launch to landing.  SLS provides the
power to safely send the Orion
spacecraft
and astronauts to the Moon. Orion, powered by the European
Service Module
, keeps the crew safe during the mission. Exploration
Ground Systems
at NASA’s Kennedy Space Center in Florida, safely
launches the SLS with Orion on top and recovers the astronauts and Orion after splashdown.

image

3. This Rocket is Engineered for a Variety of Exploration Missions

SLS is engineered for decades of human space exploration to come. SLS is
not just one rocket but a transportation
system
that evolves to meet the needs of a variety of missions. The
rocket can send more than 26 metric tons (57,000 pounds) to the Moon and can
evolve to send up to 45 metric tons (99,000 pounds) to the Moon. NASA has the
expertise to meet the challenges of designing and building a new, complex
rocket that evolves over time while developing our nation’s capability to
extend human existence into deep space.

image

2. This Rocket can Carry Crews and Cargos Farther, Faster

SLS’s versatile
design
enables it to carry astronauts their supplies as well as cargo
for resupply and send science missions far in the solar system. With its power
and unprecedented ability to transport heavy and large volume science payloads in
a single mission, SLS can send cargos to Mars or probes even farther out in the
solar system, such as to Jupiter’s moon Europa, faster than any other rocket
flying today. The rocket’s large cargo volume makes it possible to design
planetary probes, telescopes and other scientific instruments with fewer complex
mechanical parts.

image

1. This Rocket Complements International and Commercial Partners

The Space Launch System is the right rocket to enable
exploration on and around the Moon and even longer missions
away
from home. SLS makes it possible for astronauts to bring along supplies and
equipment needed to explore, such as pieces of the Gateway,
which will be the cornerstone of sustainable lunar exploration. SLS’s ability
to launch both people and payloads to deep space in a single mission makes
space travel safer and more efficient. With no buildings, hardware or grocery
stores on the Moon or Mars, there are plenty of opportunities for support by
other rockets. SLS and contributions by international and commercial partners
will make it possible to return to the Moon and create a springboard for exploration
of other areas in the solar system where we can discover and expand knowledge
for the benefit of humanity.

image

Learn more about the Space Launch System.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Spilling the Sun’s Secrets

You might think you know the Sun: It looks quiet and unchanging. But the Sun has secrets that scientists have been trying to figure out for decades.  

One of our new missions — Parker Solar Probe — is aiming to spill the Sun’s secrets and shed new light on our neighbor in the sky.

Even though it’s 93 million miles away, the Sun is our nearest and best laboratory for understanding the inner workings of stars everywhere. We’ve been spying on the Sun with a fleet of satellites for decades, but we’ve never gotten a close-up of our nearest star.

This summer, Parker Solar Probe is launching into an orbit that will take it far closer to the Sun than any instrument has ever gone. It will fly close enough to touch the Sun, sweeping through the outer atmosphere — the corona — 4 million miles above the surface.

This unique viewpoint will do a lot more than provide gossip on the Sun. Scientists will take measurements to help us understand the Sun’s secrets — including those that can affect Earth.

Parker Solar Probe is equipped with four suites of instruments that will take detailed measurements from within the Sun’s corona, all protected by a special heat shield to keep them safe and cool in the Sun’s ferocious heat.

The corona itself is home to one of the Sun’s biggest secrets: The corona’s mysteriously high temperatures. The corona, a region of the Sun’s outer atmosphere, is hundreds of times hotter than the surface below. That’s counterintuitive, like if you got warmer the farther you walked from a campfire, but scientists don’t yet know why that’s the case.

Some think the excess heat is delivered by electromagnetic waves called Alfvén waves moving outwards from the Sun’s surface. Others think it might be due to nanoflares — bomb-like explosions that occur on the Sun’s surface, similar to the flares we can see with telescopes from Earth, but smaller and much more frequent. Either way, Parker Solar Probe’s measurements direct from this region itself should help us pin down what’s really going on.

We also want to find out what exactly accelerates the solar wind — the Sun’s constant outpouring of material that rushes out at a million miles per hour and fills the Solar System far past the orbit of Pluto. The solar wind can cause space weather when it reaches Earth — triggering things like the aurora, satellite problems, and even, in rare cases, power outages.

We know where the solar wind comes from, and that it gains its speed somewhere in the corona, but the exact mechanism of that acceleration is a mystery. By sampling particles directly at the scene of the crime, scientists hope Parker Solar Probe can help crack this case.

Parker Solar Probe should also help us uncover the secrets of some of the fastest particles from the Sun. Solar energetic particles can reach speeds of more than 50% the speed of light, and they can interfere with satellites with little warning because of how fast they move. We don’t know how they get so fast — but it’s another mystery that should be solved with Parker Solar Probe on the case.  

Parker Solar Probe launches summer 2018 on a seven-year mission to touch the Sun. Keep up with the latest on the Sun at @NASASun on Twitter, and follow along with Parker Solar Probe’s last steps to launch at nasa.gov/solarprobe.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

10 Frequently Asked Questions About the James …

Got basic questions about the James Webb Space Telescope and what amazing things we’ll learn from it? We’ve got your answers right here! 

The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2021. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.

image

1. What is the James Webb Space Telescope?

Our James Webb Space Telescope is a giant space telescope that observes infrared light. Rather than a replacement for the Hubble Space Telescope, it’s a scientific successor that will complement and extend its discoveries.

image

Being able to see longer wavelengths of light than Hubble and having greatly improved sensitivity will let Webb look further back in time to see the first galaxies that formed in the early universe, and to peer inside dust clouds where stars and planetary systems are forming today.

image

2. What are the most exciting things we will learn?

We have yet to observe the era of our universe’s history when galaxies began to form

We have a lot to learn about how galaxies got supermassive black holes in their centers, and we don’t really know whether the black holes caused the galaxies to form or vice versa.

image

We can’t see inside dust clouds with high resolution, where stars and planets are being born nearby, but Webb will be able to do just that. 

We don’t know how many planetary systems might be hospitable to life, but Webb could tell whether some Earth-like planets have enough water to have oceans.

image

We don’t know much about dark matter or dark energy, but we expect to learn more about where the dark matter is now, and we hope to learn the history of the acceleration of the universe that we attribute to dark energy. 

And then, there are the surprises we can’t imagine!

3. Why is Webb an infrared telescope?

By viewing the universe at infrared wavelengths with such sensitivity, Webb will show us things never before seen by any other telescope. For example, it is only at infrared wavelengths that we can see the first stars and galaxies forming after the Big Bang. 

image

And it is with infrared light that we can see stars and planetary systems forming inside clouds of dust that are opaque to visible light, such as in the above visible and infrared light comparison image of the Carina Nebula.

4. Will Webb take amazing pictures like Hubble? Can Webb see visible light?

YES, Webb will take amazing pictures! We are going to be looking at things we’ve never seen before and looking at things we have seen before in completely new ways.

The beauty and quality of an astronomical image depends on two things: the sharpness and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble. 

image

Additionally Webb can see orange and red visible light. Webb images will be different, but just as beautiful as Hubble’s. Above, there is another comparison of infrared and visible light Hubble images, this time of the Monkey Head Nebula.

5. What will Webb’s first targets be?

The first targets for Webb will be determined through a process similar to that used for the Hubble Space Telescope and will involve our experts, the European Space Agency (ESA), the Canadian Space Agency (CSA), and scientific community participants.

image

The first engineering target will come before the first science target and will be used to align the mirror segments and focus the telescope. That will probably be a relatively bright star or possibly a star field.

6. How does Webb compare with Hubble?

Webb is designed to look deeper into space to see the earliest stars and galaxies that formed in the universe and to look deep into nearby dust clouds to study the formation of stars and planets.

image

In order to do this, Webb has a much larger primary mirror than Hubble (2.5 times larger in diameter, or about 6 times larger in area), giving it more light-gathering power. It also will have infrared instruments with longer wavelength coverage and greatly improved sensitivity than Hubble

Finally, Webb will operate much farther from Earth, maintaining its extremely cold operating temperature, stable pointing and higher observing efficiency than with the Earth-orbiting Hubble.

7. What will Webb tell us about planets outside our solar system? Will it take photos of these planets?

Webb will be able to tell us the composition of the atmospheres of planets outside our solar system, aka exoplanets. It will observe planetary atmospheres through the transit technique. A transit is when a planet moves across the disc of its parent star. 

image

Webb will also carry coronographs to enable photography of exoplanets (planets outside our solar system) near bright stars (if they are big and bright and far from the star), but they will be only “dots,” not grand panoramas. Coronographs block the bright light of stars, which could hide nearby objects like exoplanets.

Consider how far away exoplanets are from us, and how small they are by comparison to this distance! We didn’t even know what Pluto really looked like until we were able to send an observatory to fly right near it in 2015, and Pluto is in our own solar system!

8. Will we image objects in our own solar system?

Yes! Webb will be able to observe the planets at or beyond the orbit of Mars, satellites, comets, asteroids and objects in the distant, icy Kuiper Belt.

Many important molecules, ices and minerals have strong characteristic signatures at the wavelengths Webb can observe. 

image

Webb will also monitor the weather of planets and their moons. 

Because the telescope and instruments have to be kept cold, Webb’s protective sunshield will block the inner solar system from view. This means that the Sun, Earth, Moon, Mercury, and Venus, and of course Sun-grazing comets and many known near-Earth objects cannot be observed.

9. How far back will Webb see? 

image

Webb will be able to see what the universe looked like around a quarter of a billion years (possibly back to 100 million years) after the Big Bang, when the first stars and galaxies started to form.

10. When will Webb launch and how long is the mission?

Webb will launch in 2021 from French Guiana on a European Space Agency Ariane 5 rocket. 

image

Webb’s mission lifetime after launch is designed to be at least 5-½ years, and could last longer than 10 years. The lifetime is limited by the amount of fuel used for maintaining the orbit, and by the possibility that Webb’s components will degrade over time in the harsh environment of space.

Looking for some more in-depth FAQs? You can find them HERE.

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

IMAGE CREDITS
Carina Nebula: ESO/T. Preibisch
Monkey Head Nebula: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and J. Hester

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

AI, Cancer Therapy and Chemical Gardens Headed…

A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. The spacecraft will deliver science that studies the use of artificial intelligence, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. 

Take a look at five investigations headed to space on the latest SpaceX resupply:

image

Credits:

DLR

As we travel farther into space, the need for artificial intelligence (AI) within a spacecraft increases.

image

Credits:

DLR

Mobile Companion, a European Space Agency (ESA) investigation, explores the use of AI as a way to mitigate crew stress and workload during long-term spaceflight.

image

Credits:

DLR

Plants regulate their temperature by releasing water through tiny pores on their leaves. If they have sufficient water they can maintain their temperature, but if water is insufficient their temperatures rise. This temperature rise can be measured with a sensor in space.

image

Credits: NASA/JPL-Caltech

ECOSTRESS measures the temperature of plants and uses that information to better understand how much water plants need and how they respond to stress.

image

Credits: Northwestern University

Spaceflight has an on impact many bodily systems. Rodent Research-7 takes a look at how the microgravity environment of space affects the community of microoganisms in the gastrointestinal tract, or microbiota.

The study also evaluates relationships between system changes, such as sleep-wake cycle disruption, and imbalance of microbial populations, to identify contributing factors and supporting development of countermeasures to protect astronaut health during long-term missions, as well as to improve the treatment of gastrointestinal, immune, metabolic and sleep disorders on Earth.

image

Credits: Angiex

Cardiovascular diseases and cancer are the leading causes of death in developed countries. Angiex Cancer Therapy examines whether microgravity-cultured endothelial cells represent a valid in vitro model to test effects of vascular-targeted agents on normal blood vessels.

Results may create a model system for designing safer drugs, targeting the vasculature of cancer tumors and helping pharmaceutical companies design safer vascular-targeted drugs.

image

Credits: Oliver Steinbock chemistry group at Florida State University

Chemical Gardens are structures that grow during the interaction of metal salt solutions with silicates, carbonates or other selected anions. Their growth characteristics and attractive final shapes form from a complex interplay between reaction-diffusion processes and self-organization.

image

Credits: Oliver Steinbock chemistry group at Florida State University

On Earth, gravity-induced flow due to buoyancy differences between the reactants complicates our understanding of the physics behind these chemical gardens. Conducting this experiment in a microgravity environment ensures diffusion-controlled growth and allows researchers a better assessment of initiation and evolution of these structures.

These investigations join hundreds of others currently happening aboard the orbiting laboratory. 

For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. For opportunities to see the space station pass over your town, check out Spot the Station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Science Launching to Station Looks Forward and…

Some of the earliest human explorers used mechanical tools called sextants to navigate vast oceans and discover new lands. Today, high-tech tools navigate microscopic DNA to discover previously unidentified organisms. Scientists aboard the International Space Station soon will have both types of tools at their disposal.

image

Orbital ATK’s Cygnus spacecraft is scheduled to launch its ninth contracted cargo resupply mission to the space station no earlier than May 21. Sending crucial science, supplies and cargo to the crew of six humans living and working on the orbiting laboratory.

Our Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a lost-communications navigation backup. The Sextant Navigation investigation tests use of a hand-held sextant for emergency navigation on missions in deep space as humans begin to travel farther from Earth.

image

Jim Lovell (far left) demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. 

image

The remoteness and constrained resources of living in space require simple but effective processes and procedures to monitor the presence of microbial life, some of which might be harmful. Biomolecule Extraction and Sequencing Technology (BEST) advances the use of sequencing processes to identify microbes aboard the space station that current methods cannot detect and to assess mutations in the microbial genome that may be due to spaceflight.  

image

Genes in Space 3 performed in-flight identification of bacteria on the station for the first time. BEST takes that one step farther, identifying unknown microbial organisms using a process that sequences directly from a sample with minimal preparation, rather than with the traditional technique that requires growing a culture from the sample.

image

Adding these new processes to the proven technology opens new avenues for inflight research, such as how microorganisms on the station change or adapt to spaceflight.

The investigation’s sequencing components provide important information on the station’s microbial occupants, including which organisms are present and how they respond to the spaceflight environment – insight that could help protect humans during future space exploration. Knowledge gained from BEST could also provide new ways to monitor the presence of microbes in remote locations on Earth.

Moving on to science at a scale even smaller than a microbe, the new Cold Atom Lab (CAL) facility could help answer some big questions in modern physics.

image

CAL creates a temperature ten billion (Yup. BILLION) times colder than the vacuum of space, then uses lasers and magnetic forces to slow down atoms until they are almost motionless. CAL makes it possible to observe these ultra-cold atoms for much longer in the microgravity environment on the space station than would be possible on the ground.

image

Results of this research could potentially lead to a number of improved technologies, including sensors, quantum computers and atomic clocks used in spacecraft navigation.

A partnership between the European Space Agency (ESA) and Space Application Services (SpaceAps), The International Commercial Experiment, or ICE Cubes Service, uses a sliding framework permanently installed on the space station and “plug-and-play” Experiment Cubes.

image

The Experiment Cubes are easy to install and remove, come in different sizes and can be built with commercial off-the-shelf components, significantly reducing the cost and time to develop experiments.

ICE Cubes removes barriers that limit access to space, providing more people access to flight opportunities. Potential fields of research range from pharmaceutical development to experiments on stem cells, radiation, and microbiology, fluid sciences, and more.

For daily nerd outs, follow @ISS_Research on Twitter!

Watch the Launch + More!

image

What’s On Board Briefing

Join scientists and researchers as they discuss some of the investigations that will be delivered to the station on Saturday, May 19 at 1 p.m. EDT at nasa.gov/live. Have questions? Use #askNASA

CubeSat Facebook Live

The International Space Station is often used to deploy small satellites, a low-cost way to test technology and science techniques in space. On board this time, for deployment later this summer, are three CubeSats that will help us monitor rain and snow, study weather and detect and filter radio frequency interference (RFI). 

Join us on Facebook Live on Saturday, May 19 at 3:30 p.m. EDT on the NASA’s Wallops Flight Facility page to hear from experts and ask them your questions about these small satellites. 

Pre-Launch Briefing

Tune in live at nasa.gov/live as mission managers provide an overview and status of launch operations at 11 a.m. EDT on Sunday, May 20. Have questions? Use #askNASA

LIFTOFF!

Live launch coverage will begin on Monday, May 21 4:00 a.m. on NASA Television, nasa.gov/live, Facebook Live, Periscope, Twitch, Ustream and YouTube. Liftoff is slated for 4:39 a.m.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Meet Our Latest CubeSats

When the next Orbital ATK cargo mission to the International Space Station blasts off from Wallops Flight Facility in Virginia on May 20 at 5:04 a.m. EDT carrying science and supplies, the Cygnus spacecraft will also be carrying a few of our latest CubeSats.

image

The International Space Station is often used to deploy small satellites, a low-cost way to test technology and science techniques in space.

image

On board this time, for deployment later this summer, are…

The ‘Rabbit’ in the RainCube

As its name suggests, RainCube will use radar to measure rain and snowfall. CubeSats are measured in increments of 1U (A CubeSat unit, or 1U, is roughly equivalent to a 4-inch box, or 10x10x10 centimeters). The RainCube antenna has to be small enough to be crammed into a 1.5U container; the entire satellite is about as big as a cereal box.

“It’s like pulling a rabbit out of a hat,” said Nacer Chahat, a specialist in antenna design at our Jet Propulsion Laboratory. “Shrinking the size of the radar is a challenge for us. As space engineers, we usually have lots of volume, so building antennas packed into a small volume isn’t something we’re trained to do.”

image

That small antenna will deploy in space, like an upside-down umbrella. To maintain its small size, the antenna relies on the high-frequency Ka-band wavelength – good for profiling rain and snow. Ka-band also allows for an exponential increase in sending data over long distances, making it the perfect tool for telecommunications.

Peering Into Clouds

image

TEMPEST-D will also study weather. Temporal Experiment for Storms and Tropical Systems – Demonstration (TEMPEST-D) has satellite technology with the potential to measure cloud and precipitation processes on a global basis. These measurements help improve understanding of Earth’s water cycle and weather predictions, particularly conditions inside storms.

image

TEMPEST-D millimeter-wave observations have the ability to penetrate into clouds to where precipitation initiation occurs. By measuring the evolution of clouds from the moment of the onset of precipitation, a future TEMPEST constellation mission could improve weather forecasting and improve our understanding of cloud processes, essential to understanding climate change.

Cutting Through the Noise

image

CubeRRT, also the size of a cereal box, will space test a small component designed to detect and filter radio frequency interference (RFI). RFI is everywhere, from cellphones, radio and TV transmissions, satellite broadcasts and other sources. You probably recognize it as that annoying static when you can’t seem to get your favorite radio station to come in clearly because another station is nearby on the dial.

image

The same interference that causes radio static also affects the quality of data that instruments like microwave radiometers collect. As the number of RFI-causing devices increases globally, our satellite instruments – specifically, microwave radiometers that gather data on soil moisture, meteorology, climate and more – will be more challenged in collecting high-quality data.

That’s where CubeSat Radiometer Radio frequency interference Technology (CubeRRT) comes in. The small satellite will be carrying a new technology to detect and filter any RFI the satellite encounters in real-time from space. This will reduce the amount of data that needs to be transmitted back to Earth – increasing the quality of important weather and climate measurements.

Searching the Halo of the Milky Way

image

Did you know that we’re still looking for half of the normal matter that makes up the universe? Scientists have taken a census of all the stars, galaxies and clusters of galaxies — and we’re coming up short, based on what we know about the early days of the cosmos.

That missing matter might be hiding in tendrils of hot gas between galaxies. Or it might be in the halos of hot gas around individual galaxies like our own Milky Way. But if it’s there, why haven’t we seen it? It could be that it’s so hot that it glows in a spectrum of X-rays we haven’t looked at before.

image

Image Credit: Blue Canyon Technologies

Enter HaloSat. Led by the University of Iowa, HaloSat will search the halo of the Milky Way for the emissions oxygen gives off at these very high temperatures. Most other X-ray satellites look at narrow patches of the sky and at individual sources. HaloSat will look at large swaths of the sky at a time, which will help us figure out the geometry of the halo — whether it surrounds the galaxy more like a fried egg or a sphere. Knowing the halo’s shape will in turn help us figure out the mass, which may help us discover if the universe’s missing matter is in galactic halos.

CubeSats for All

Small satellites benefit Earth and its people (us!) in multiple ways. From Earth imaging satellites that help meteorologists to predict storm strengths and direction, to satellites that focus on technology demonstrations to help determine what materials function best in a microgravity environment, the science enabled by CubeSats is diverse. 

image

They are also a pathway to space science for students. Our CubeSat Launch initiative (CSLI) provides access to space for small satellites developed by our Centers and programs, educational institutions and nonprofit organizations. Since the program began, more than 50 educational CubeSats have flown. In 2016, students built the first CubeSat deployed into space by an elementary school.

Learn more about CubeSats HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Astronaut Journal Entry – Pre-Launch

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry written by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Our crew just finished the final training event before the launch. Tomorrow, at 13:20 local time (Baikonur), we will strap the Soyuz MS-07 spacecraft to our backs and fly it to low Earth orbit. We will spend 2.5 days in low Earth orbit before docking to the MRM-1 docking port on the International Space Station (ISS). There we will begin approximately 168 days of maintenance, service and science aboard one of the greatest engineering marvels that humans have ever created.

image

Today was bittersweet. Ending a 2-year process of intense training was welcomed by all of us. We are very tired. Seeing our families for the last time was difficult. I am pretty lucky, though. My wife, Raynette, and the kids have grown up around military service and are conditioned to endure the time spent apart during extended calls-to-duty. We are also very much anticipating the good times we will have upon my return in June. Sean and Amy showed me a few videos of them mucking it up at Red Square before flying out to Baikonur. Eric was impressed with the Russian guards marching in to relieve the watch at Red Square. Raynette was taking it all in stride and did not seem surprised by any of it. I think I might have a family of mutants who are comfortable anywhere. Nice! And, by the way, I am VERY proud of all of them!

image

Tomorrow’s schedule includes a wake-up at 04:00, followed by an immediate medical exam and light breakfast. Upon returning to our quarters, we will undergo a few simple medical procedures that should help make the 2.5-day journey to ISS a little more comfortable. I’ve begun prepping with motion sickness medication that should limit the nausea associated with the first phases of spaceflight. I will continue this effort through docking. This being my first flight, I’m not sure how my body will respond and am taking all precautions to maintain a good working capability. The commander will need my help operating the vehicle, and I need to not be puking into a bag during the busy times. We suit up at 09:30 and then report to the State Commission as “Готовы к Полёту”, or “Ready for Flight”. We’ll enter the bus, wave goodbye to our friends and family, and then head out to the launch pad. Approximately 2 kilometers from the launch pad, the bus will stop. 

image

The crew will get out, pee on the bus’s tire, and then complete the last part of the drive to the launch pad. This is a traditional event first done by Yuri Gagarin during his historic first flight and repeated in his honor to this day. We will then strap in and prepare the systems for launch. Next is a waiting game of approximately 2 hours. Ouch. The crew provided five songs each to help pass the time. My playlist included “Born to Run” (Springsteen), “Sweet Child O’ Mine” (Guns and Roses), “Cliffs of Dover” (Eric Johnson), “More than a Feeling” (Boston), and “Touch the Sky” (Rainbow Bridge, Russian). Launch will happen precisely at 13:20.

image

I think this sets the stage. It’s 21:30, only 6.5 hours until duty calls. Time to get some sleep. If I could only lower my level of excitement!

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Photo

Photo

10 Things: Journey to the Center of Mars

May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.

image

Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.

1. What’s in a name? 

image

“Insight” is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the “vital signs” of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.

2. Marsquakes. 

You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they’re made of. In this way, seismology is like taking an X-ray of the interior of Mars.

Want to know more? Check out this one-minute video.

3. More than Mars. 

image

InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth’s interior to that of Mars, InSight’s team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.

4. Robot testing. 

InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.

Want to see what a Mars robot test lab is like? Take a 360 tour.

5. The gang’s all here. 

image

InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.

6. Trifecta. 

image

InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.

7. Solar wings. 

Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.

8. Clues in the crust. 

image

Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.

9. Passengers. 

image

InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. “It’s a fun way for the public to feel personally invested in the mission,” said Bruce Banerdt of our Jet Propulsion Laboratory, the mission’s principal investigator. “We’re happy to have them along for the ride.”

10. Tiny CubeSats, huge firsts. 

image

The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.

Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.