Category: galaxy

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.


We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!


Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.


Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?


Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.


Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.


So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?


It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.


NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!


Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space:

Solar System 10 Things: Dust in the Wind, on M…

To most of us, dust is an annoyance. Something to be cleaned up, washed off or wiped away. But these tiny particles that float about and settle on surfaces play an important role in a variety of processes on Earth and across the solar system. So put away that feather duster for a few moments, as we share with you 10 things to know about dust.


1. “Dust” Doesn’t Mean Dirty, it Means Tiny

Not all of what we call “dust” is made of the same stuff. Dust in your home generally consists of things like particles of sand and soil, pollen, dander (dead skin cells), pet hair, furniture fibers and cosmetics. But in space, dust can refer to any sort of fine particles smaller than a grain of sand. Dust is most commonly bits of rock or carbon-rich, soot-like grains, but in the outer solar system, far from the Sun’s warmth, it’s also common to find tiny grains of ice as well. Galaxies, including our Milky Way, contain giant clouds of fine dust that are light years across – the ingredients for future generations of planetary systems like ours.


2. Some Are Big, Some Are Small (and Big Ones Tend to Fall)

Dust grains come in a range of sizes, which affects their properties. Particles can be extremely tiny, from only a few tens of nanometers (mere billionths of a meter) wide, to nearly a millimeter wide. As you might expect, smaller dust grains are more easily lifted and pushed around, be it by winds or magnetic, electrical and gravitational forces. Even the gentle pressure of sunlight is enough to move smaller dust particles in space. Bigger particles tend to be heavier, and they settle out more easily under the influence of gravity.

For example, on Earth, powerful winds can whip up large amounts of dust into the atmosphere. While the smaller grains can be transported over great distances, the heavier particles generally sink back to the ground near their source. On Saturn’s moon Enceladus, jets of icy dust particles spray hundreds of miles up from the surface; the bigger particles are lofted only a few tens of miles (or kilometers) and fall back to the ground, while the finest particles escape the moon’s gravity and go into orbit around Saturn to create the planet’s E ring.



Generally speaking, the space between the planets is pretty empty, but not completely so. Particles cast off by comets and ground up bits of asteroids are found throughout the solar system. Take any volume of space half a mile (1 kilometer) on a side, and you’d average a few micron-sized particles (grains the thickness of a red blood cell).

Dust in the solar system was a lot more abundant in the past. There was a huge amount of it present as the planets began to coalesce out of the disk of material that formed the Sun. In fact, motes of dust gently sticking together were likely some of the earliest seeds of the planet-building process. But where did all that dust come from, originally? Some of it comes from stars like our Sun, which blow off their outer layers in their later years. But lots of it also comes from exploding stars, which blast huge amounts of dust and gas into space when they go boom.


4. From a Certain Point of View

Dust is easier to see from certain viewing angles. Tiny particles scatter light depending on how big their grains are. Larger particles tend to scatter light back in the direction from which it came, while very tiny particles tend to scatter light forward, more or less in the direction it was already going. Because of this property, structures like planetary rings made of the finest dusty particles are best viewed with the Sun illuminating them from behind. For example, Jupiter’s rings were only discovered after the Voyager 1 spacecraft passed by the planet, where it could look back and see them backlit by the Sun. You can see the same effect looking through a dusty windshield at sunset; when you face toward the Sun, the dust becomes much more apparent.


5. Dust Storms Are Common on Mars

Local dust storms occur frequently on Mars, and occasionally grow or merge to form regional systems, particularly during the southern spring and summer, when Mars is closest to the Sun. On rare occasions, regional storms produce a dust haze that encircles the planet and obscures surface features beneath. A few of these events may become truly global storms, such as one in 1971 that greeted the first spacecraft to orbit Mars, our Mariner 9. In mid-2018, a global dust storm enshrouded Mars, hiding much of the Red Planet’s surface from view and threatening the continued operation of our uber long-lived Opportunity rover. We’ve also seen global dust storms in 1977, 1982, 1994, 2001 and 2007.

Dust storms will likely present challenges for future astronauts on the Red Planet. Although the force of the wind on Mars is not as strong as portrayed in an early scene in the movie “The Martian,” dust lofted during storms could affect electronics and health, as well as the availability of solar energy.

6. Dust From the Sahara Goes Global

Earth’s largest, hottest desert is connected to its largest tropical rain forest by dust. The Sahara Desert is a near-uninterrupted brown band of sand and scrub across the northern third of Africa. The Amazon rain forest is a dense green mass of humid jungle that covers northeast South America. But after strong winds sweep across the Sahara, a dusty cloud rises in the air, stretches between the continents, and ties together the desert and the jungle.

This trans-continental journey of dust is important because of what is in the dust. Specifically, the dust picked up from the Bodélé Depression in Chad – an ancient lake bed where minerals composed of dead microorganisms are loaded with phosphorus. Phosphorus is an essential nutrient for plant proteins and growth, which the nutrient-poor Amazon rain forest depends on in order to flourish.


7. Rings and Things

The rings of the giant planets contain a variety of different dusty materials. Jupiter’s rings are made of fine rock dust. Saturn’s rings are mostly pure water ice, with a sprinkling of other materials. (Side note about Saturn’s rings: While most of the particles are boulder-sized, there’s also lots of fine dust, and some of the fainter rings are mostly dust with few or no large particles.) Dust in the rings of Uranus and Neptune is made of dark, sooty material, probably rich in carbon.

Over time, dust gets removed from ring systems due to a variety of processes. For example, some of the dust falls into the planet’s atmosphere, while some gets swept up by the planets’ magnetic fields, and other dust settles onto the surfaces of the moons and other ring particles. Larger particles eventually form new moons or get ground down and mixed with incoming material. This means rings can change a lot over time, so understanding how the tiniest ring particles are being moved about has bearing on the history, origins and future of the rings.


8. Moon Dust is Clingy and Might Make You Sick

So, dust is kind of a thing on the Moon. When the Apollo astronauts visited the Moon, they found that lunar dust quickly coated their spacesuits and was difficult to remove. It was quite abrasive, causing wear on their spacesuit fabrics, seals and faceplates. It also clogged mechanisms like the joints in spacesuit limbs, and interfered with fasteners like zippers and Velcro. The astronauts also noted that it had a distinctive, pungent odor, not unlike gunpowder, and it was an eye and lung irritant.

Many of these properties apparently can be explained by the fact that lunar dust particles are quite rough and jagged. While dust particles on Earth get tumbled and ground by the wind into smoother shapes, this sort of weathering doesn’t happen so much on the Moon. The roughness of Moon dust grains makes it very easy for them to cling to surfaces and scratch them up. It also means they’re not the sort of thing you would want to inhale, as their jagged edges could damage delicate tissues in the lung.


9. Dust is What Makes Comets So Pretty

Most comets are basically clods of dust, rock and ice. They spend most of their time far from the Sun, out in the refrigerated depths of the outer solar system, where they’re peacefully dormant. But when their orbits carry them closer to the Sun – that is, roughly inside the orbit of Jupiter – comets wake up. In response to warming temperatures, the ices on and near their surfaces begin to turn into gases, expanding outward and away from the comet, and creating focused jets of material in places. Dust gets carried away by this rapidly expanding gas, creating a fuzzy cloud around the comet’s nucleus called a coma. Some of the dust also is drawn out into a long trail – the comet’s tail.


10. We’re Not the Only Ones Who’re So Dusty

Dust in our solar system is continually replenished by comets whizzing past the Sun and the occasional asteroid collision, and it’s always being moved about, thanks to a variety of factors like the gravity of the planets and even the pressure of sunlight. Some of it even gets ejected from our solar system altogether.

With telescopes, we also observe dusty debris disks around many other stars. As in our own system, the dust in such disks should evolve over time, settling on planetary surfaces or being ejected, and this means the dust must be replenished in those star systems as well. So studying the dust in our planetary environs can tell us about other systems, and vice versa. Grains of dust from other planetary systems also pass through our neighborhood – a few spacecraft have actually captured and analyzed some them – offering us a tangible way to study material from other stars.

Read the full version of ‘Solar System: 10 Things to Know’ article HERE

Make sure to follow us on Tumblr for your regular dose of space:

8 Common Questions About Our James Webb Space …

You might have heard the basics about our James Webb Space Telescope, or Webb, and still have lots more questions!  Here are more advanced questions we are frequently asked.  (If you want to know the basics, read this Tumblr first!)

Webb is our upcoming infrared space observatory, which will launch in 2021. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born and how life could form on other planets.

1. Why is the mirror segmented? 

The James Webb Space Telescope has a 6.5-meter (21.3-foot) diameter mirror, made from 18 individual segments. Webb needs to have an unfolding mirror because the mirror is so large that it otherwise cannot fit in the launch shroud of currently available rockets.


The mirror has to be large in order to see the faint light from the first star-forming regions and to see very small details at infrared wavelengths. 


Designing, building and operating a mirror that unfolds is one of the major technological developments of Webb. Unfolding mirrors will be necessary for future missions requiring even larger mirrors, and will find application in other scientific, civil and military space missions.

2. Why are the mirrors hexagonal?

In short, the hexagonal shape allows a segmented mirror to be constructed with very small gaps, so the segments combine to form a roughly circular shape and need only three variations in size. If we had circular segments, there would be gaps between them.


Finally, we want a roughly circular overall mirror shape because that focuses the light into the most symmetric and compact region on the detectors. 


An oval mirror, for example, would give images that are elongated in one direction. A square mirror would send a lot of the light out of the central region.

3. Is there a danger from micrometeoroids?

A micrometeoroid is a particle smaller than a grain of sand. Most never reach Earth’s surface because they are vaporized by the intense heat generated by the friction of passing through the atmosphere. In space, no blanket of atmosphere protects a spacecraft or a spacewalker.

Webb will be a million miles away from the Earth orbiting what we call the second Lagrange point (L2). Unlike in low Earth orbit, there is not much space debris out there that could damage the exposed mirror. 


But we do expect Webb to get impacted by these very tiny micrometeoroids for the duration of the mission, and Webb is designed to accommodate for them.


All of Webb’s systems are designed to survive micrometeoroid impacts.

4. Why does the sunshield have five layers?

Webb has a giant, tennis-court sized sunshield, made of five, very thin layers of an insulating film called Kapton.  

Why five? One big, thick sunshield would conduct the heat from the bottom to the top more than would a shield with five layers separated by vacuum. With five layers to the sunshield, each successive one is cooler than the one below. 


The heat radiates out from between the layers, and the vacuum between the layers is a very good insulator. From studies done early in the mission development five layers were found to provide sufficient cooling. More layers would provide additional cooling, but would also mean more mass and complexity. We settled on five because it gives us enough cooling with some “margin” or a safety factor, and six or more wouldn’t return any additional benefits.

Fun fact: You could nearly boil water on the hot side of the sunshield, and it is frigid enough on the cold side to freeze nitrogen!

5. What kind of telescope is Webb?


Webb is a reflecting telescope that uses three curved mirrors. Technically, it’s called a three-mirror anastigmat.

6. What happens after launch? How long until there will be data?

We’ll give a short overview here, but check out our full FAQ for a more in-depth look.

In the first hour: About 30 minutes after liftoff, Webb will separate from the Ariane 5 launch vehicle. Shortly after this, we will talk with Webb from the ground to make sure everything is okay after its trip to space.


In the first day: About 10.5 hours after launch, Webb will pass the Moon’s orbit, nearly a quarter of the way to Lagrange Point 2 (L2).


In the first week: We begin the major deployment of Webb. This includes unfolding the sunshield and tensioning the individual membranes, deploying the secondary mirror, and deploying the primary mirror.


In the first month: As the telescope cools in the shade of the sunshield, we turn on the warm electronics and initialize the flight software. As the telescope cools to near its operating temperature, parts of it are warmed with electronic heaters. This prevents condensation as residual water trapped within some of the materials making up the observatory escapes into space.


In the second month: We will turn on and operate Webb’s Fine Guidance Sensor, NIRCam, and NIRSpec instruments. 


The first NIRCam image, which will be an out-of-focus image of a crowded star field, will be used to identify each mirror segment with its image of a star in the camera. We will also focus the secondary mirror.


In the third month: We will align the primary mirror segments so that they can work together as a single optical surface. We will also turn on and operate Webb’s mid-infrared instrument (MIRI), a camera and spectrograph that views a wide spectrum of infrared light. By the end of the third month, we will be able to take the first science-quality images. Also by this time, Webb will complete its journey to its L2 orbit position.


In the fourth through the sixth month: We will complete the optimization of the telescope. We will test and calibrate all of the science instruments.

After six months: Webb will begin its science mission and start to conduct routine science operations.


7. Why not assemble it in orbit?

Various scenarios were studied, and assembling in orbit was determined to be unfeasible.

We examined the possibility of in-orbit assembly for Webb. The International Space Station does not have the capability to assemble precision optical structures. Additionally, space debris that resides around the space station could have damaged or contaminated Webb’s optics. Webb’s deployment happens far above low Earth orbit and the debris that is found there.


Finally, if the space station were used as a stopping point for the observatory, we would have needed a second rocket to launch it to its final destination at L2. The observatory would have to be designed with much more mass to withstand this “second launch,” leaving less mass for the mirrors and science instruments.

8. Who is James Webb?

This telescope is named after James E. Webb (1906–1992), our second administrator. Webb is best known for leading Apollo, a series of lunar exploration programs that landed the first humans on the Moon. 


However, he also initiated a vigorous space science program that was responsible for more than 75 launches during his tenure, including America’s first interplanetary explorers.

Looking for some more in-depth FAQs? You can find them HERE.

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space:

10 Frequently Asked Questions About the James …

Got basic questions about the James Webb Space Telescope and what amazing things we’ll learn from it? We’ve got your answers right here! 

The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2021. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.


1. What is the James Webb Space Telescope?

Our James Webb Space Telescope is a giant space telescope that observes infrared light. Rather than a replacement for the Hubble Space Telescope, it’s a scientific successor that will complement and extend its discoveries.


Being able to see longer wavelengths of light than Hubble and having greatly improved sensitivity will let Webb look further back in time to see the first galaxies that formed in the early universe, and to peer inside dust clouds where stars and planetary systems are forming today.


2. What are the most exciting things we will learn?

We have yet to observe the era of our universe’s history when galaxies began to form

We have a lot to learn about how galaxies got supermassive black holes in their centers, and we don’t really know whether the black holes caused the galaxies to form or vice versa.


We can’t see inside dust clouds with high resolution, where stars and planets are being born nearby, but Webb will be able to do just that. 

We don’t know how many planetary systems might be hospitable to life, but Webb could tell whether some Earth-like planets have enough water to have oceans.


We don’t know much about dark matter or dark energy, but we expect to learn more about where the dark matter is now, and we hope to learn the history of the acceleration of the universe that we attribute to dark energy. 

And then, there are the surprises we can’t imagine!

3. Why is Webb an infrared telescope?

By viewing the universe at infrared wavelengths with such sensitivity, Webb will show us things never before seen by any other telescope. For example, it is only at infrared wavelengths that we can see the first stars and galaxies forming after the Big Bang. 


And it is with infrared light that we can see stars and planetary systems forming inside clouds of dust that are opaque to visible light, such as in the above visible and infrared light comparison image of the Carina Nebula.

4. Will Webb take amazing pictures like Hubble? Can Webb see visible light?

YES, Webb will take amazing pictures! We are going to be looking at things we’ve never seen before and looking at things we have seen before in completely new ways.

The beauty and quality of an astronomical image depends on two things: the sharpness and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble. 


Additionally Webb can see orange and red visible light. Webb images will be different, but just as beautiful as Hubble’s. Above, there is another comparison of infrared and visible light Hubble images, this time of the Monkey Head Nebula.

5. What will Webb’s first targets be?

The first targets for Webb will be determined through a process similar to that used for the Hubble Space Telescope and will involve our experts, the European Space Agency (ESA), the Canadian Space Agency (CSA), and scientific community participants.


The first engineering target will come before the first science target and will be used to align the mirror segments and focus the telescope. That will probably be a relatively bright star or possibly a star field.

6. How does Webb compare with Hubble?

Webb is designed to look deeper into space to see the earliest stars and galaxies that formed in the universe and to look deep into nearby dust clouds to study the formation of stars and planets.


In order to do this, Webb has a much larger primary mirror than Hubble (2.5 times larger in diameter, or about 6 times larger in area), giving it more light-gathering power. It also will have infrared instruments with longer wavelength coverage and greatly improved sensitivity than Hubble

Finally, Webb will operate much farther from Earth, maintaining its extremely cold operating temperature, stable pointing and higher observing efficiency than with the Earth-orbiting Hubble.

7. What will Webb tell us about planets outside our solar system? Will it take photos of these planets?

Webb will be able to tell us the composition of the atmospheres of planets outside our solar system, aka exoplanets. It will observe planetary atmospheres through the transit technique. A transit is when a planet moves across the disc of its parent star. 


Webb will also carry coronographs to enable photography of exoplanets (planets outside our solar system) near bright stars (if they are big and bright and far from the star), but they will be only “dots,” not grand panoramas. Coronographs block the bright light of stars, which could hide nearby objects like exoplanets.

Consider how far away exoplanets are from us, and how small they are by comparison to this distance! We didn’t even know what Pluto really looked like until we were able to send an observatory to fly right near it in 2015, and Pluto is in our own solar system!

8. Will we image objects in our own solar system?

Yes! Webb will be able to observe the planets at or beyond the orbit of Mars, satellites, comets, asteroids and objects in the distant, icy Kuiper Belt.

Many important molecules, ices and minerals have strong characteristic signatures at the wavelengths Webb can observe. 


Webb will also monitor the weather of planets and their moons. 

Because the telescope and instruments have to be kept cold, Webb’s protective sunshield will block the inner solar system from view. This means that the Sun, Earth, Moon, Mercury, and Venus, and of course Sun-grazing comets and many known near-Earth objects cannot be observed.

9. How far back will Webb see? 


Webb will be able to see what the universe looked like around a quarter of a billion years (possibly back to 100 million years) after the Big Bang, when the first stars and galaxies started to form.

10. When will Webb launch and how long is the mission?

Webb will launch in 2021 from French Guiana on a European Space Agency Ariane 5 rocket. 


Webb’s mission lifetime after launch is designed to be at least 5-½ years, and could last longer than 10 years. The lifetime is limited by the amount of fuel used for maintaining the orbit, and by the possibility that Webb’s components will degrade over time in the harsh environment of space.

Looking for some more in-depth FAQs? You can find them HERE.

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Carina Nebula: ESO/T. Preibisch
Monkey Head Nebula: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and J. Hester

Make sure to follow us on Tumblr for your regular dose of space:

Happy 4th of July… From Space!

In Hollywood blockbusters, explosions and eruptions are often among the stars of the show. In space, explosions, eruptions and twinkling of actual stars are a focus for scientists who hope to better understand their births, lives, deaths and how they interact with their surroundings. Spend some of your Fourth of July taking a look at these celestial phenomenon:


Credit: NASA/Chandra X-ray Observatory

An Astral Exhibition

This object became a sensation in the astronomical community when a team of researchers pointed at it with our Chandra X-ray Observatory telescope in 1901, noting that it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite it as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.


Credit: NASA/Hubble Space Telescope

A Twinkling Tapestry

The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display. The sparkling centerpiece is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground located 20,000 light-years away from Earth in the constellation Carina.


Credit: NASA/THEMIS/Sebastian Saarloos

An Illuminating Aurora

Sometimes during solar magnetic events, solar explosions hurl clouds of magnetized particles into space. Traveling more than a million miles per hour, these coronal mass ejections, or CMEs, made up of hot material called plasma take up to three days to reach Earth. Spacecraft and satellites in the path of CMEs can experience glitches as these plasma clouds pass by. In near-Earth space, magnetic reconnection incites explosions of energy driving charged solar particles to collide with atoms in Earth’s upper atmosphere. We see these collisions near Earth’s polar regions as the aurora. Three spacecraft from our Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, observed these outbursts known as substorms.


Credit: NASA/Hubble Space Telescope//ESA/STScI

A Shining Supermassive Merger

Every galaxy has a black hole at its center. Usually they are quiet, without gas accretions, like the one in our Milky Way. But if a star creeps too close to the black hole, the gravitational tides can rip away the star’s gaseous matter. Like water spinning around a drain, the gas swirls into a disk around the black hole at such speeds that it heats to millions of degrees. As an inner ring of gas spins into the black hole, gas particles shoot outward from the black hole’s polar regions. Like bullets shot from a rifle, they zoom through the jets at velocities close to the speed of light. Astronomers using our Hubble Space Telescope observed correlations between supermassive black holes and an event similar to tidal disruption, pictured above in the Centaurus A galaxy. 


Credit: NASA/Hubble Space Telescope/ESA

A Stellar Explosion

Supernovae can occur one of two ways. The first occurs when a white dwarf—the remains of a dead star—passes so close to a living star that its matter leaks into the white dwarf. This causes a catastrophic explosion. However most people understand supernovae as the death of a massive star. When the star runs out of fuel toward the end of its life, the gravity at its heart sucks the surrounding mass into its center. At the turn of the 19th century, the binary star system Eta Carinae was faint and undistinguished. Our Hubble Telescope captured this image of Eta Carinae, binary star system. The larger of the two stars in the Eta Carinae system is a huge and unstable star that is nearing the end of its life, and the event that the 19th century astronomers observed was a stellar near-death experience. Scientists call these outbursts supernova impostor events, because they appear similar to supernovae but stop just short of destroying their star.



An Eye-Catching Eruption

Extremely energetic objects permeate the universe. But close to home, the Sun produces its own dazzling lightshow, producing the largest explosions in our solar system and driving powerful solar storms.. When solar activity contorts and realigns the Sun’s magnetic fields, vast amounts of energy can be driven into space. This phenomenon can create a sudden flash of light—a solar flare.The above picture features a filament eruption on the Sun, accompanied by solar flares captured by our Solar Dynamics Observatory.

Make sure to follow us on Tumblr for your regular dose of space:

Where in the World is Our Flying Telescope? Ne…


Our flying observatory SOFIA carries a telescope inside this Boeing 747SP aircraft. Scientists use SOFIA to study the universe — including stars, planets and black holes — while flying as high as 45,000 feet.


SOFIA is typically based at our Armstrong Flight Research Center in Palmdale, California, but recently arrived in Christchurch, New Zealand, to study celestial objects that are best observed from the Southern Hemisphere.

So what will we study from the land down under?

Eta Carinae


Eta Carinae, in the southern constellation Carina, is the most luminous stellar system within 10,000 light-years of Earth. It’s made of two massive stars that are shrouded in dust and gas from its previous eruptions and may one day explode as a supernova. We will analyze the dust and gas around it to learn how this violent system evolves.

Celestial Magnetic Fields


We can study magnetic fields in the center of our Milky Way galaxy from New Zealand because there the galaxy is high in the sky — where we can observe it for long periods of time. We know that this area has strong magnetic fields that affect the material spiraling into the black hole here and forming new stars. But we want to learn about their shape and strength to understand how magnetic fields affect the processes in our galactic center.

Saturn’s Moon Titan


Titan is Saturn’s largest moon and is the only moon in our solar system to have a thick atmosphere — it’s filled with a smog-like haze. It also has seasons, each lasting about seven Earth years. We want to learn if its atmosphere changes seasonally.


Titan will pass in front of a star in an eclipse-like event called an occultation. We’ll chase down the shadow it casts on Earth’s surface, and fly our airborne telescope directly in its center. 


From there, we can determine the temperature, pressure and density of Titan’s atmosphere. Now that our Cassini Spacecraft has ended its mission, the only way we can continue to monitor its atmosphere is by studying these occultation events.

Nearby Galaxies


The Large Magellanic Cloud is a galaxy near our own, but it’s only visible from the Southern Hemisphere! Inside of it are areas filled with newly forming stars and the leftovers from a supernova explosion.

The Tarantula Nebula


The Tarantula Nebula, also called 30 Doradus, is located in the Large Magellanic Cloud and shown here in this image from Chandra, Hubble and Spitzer. It holds a cluster of thousands of stars forming simultaneously. Once the stars are born, their light and winds push out the material leftover from their parent clouds — potentially leaving nothing behind to create more new stars. We want to know if the material is still expanding and forming new stars, or if the star-formation process has stopped. So our team on SOFIA will make a map showing the speed and direction of the gas in the nebula to determine what’s happening inside it.

Supernova 1987A


Also in the Large Magellanic Cloud is Supernova 1987A, the closest supernova explosion witnessed in almost 400 years. We will continue studying this supernova to better understand the material expanding out from it, which may become the building blocks of future stars and planets. Many of our telescopes have studied Supernova 1987A, including the Hubble Space Telescope and the Chandra X-ray Observatory, but our instruments on SOFIA are the only tools we can use to study the debris around it with infrared light, which let us better understand characteristics of the dust that cannot be measured using other wavelengths of light.

For live updates about our New Zealand observations follow SOFIA on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space:  

10 Ways to BBQ on an Alien World

There are over 3,700 planets in our galaxy. Many of them orbit stars outside our solar system, these are known as exoplanets. Spend a summer weekend barbecuing it up on any of these alien worlds.

(WARNING: Don’t try any of this on Earth—except the last one.)

1. Lava World

Janssen aka 55 Cancri e

Hang your steak on a fishing pole and dangle your meat over the boiling pools of lava on this possible magma world. Try two to three minutes on each side to get an ashy feast of deliciousness.

2. Hot Jupiter

Dimidium aka 51 Pegasi b

Set your grill to 1800 degrees Fahrenheit (982 degrees Celsius) or hop onto the first exoplanet discovered and get a perfect char on your hot dogs. By the time your dogs are done, it’ll be New Year’s Eve, because a year on this planet is only four days long.

3. Super Earth

HD 40307 g

Super air fry your duck on this Super Earth, as you skydive in the intense gravity of a planet twice as massive as Earth. Why are you air frying a duck? We don’t know. Why are you skydiving on an exoplanet? We’re not judging.

4. Lightning Neptune


I’ve got steaks, they’re multiplying/and I’m looooosing control. Cause the power this planet is supplying/is electrifying!

Sear your tuna to perfection in the lightning strikes that could flash across the stormy skies of this Neptune-like planet named HAT-P-11b.

5. Red Earth


Tired of all that meat? Try a multi-colored salad with the vibrant plants that could grow under the red sun of this Earth-sized planet. But it could also be a lifeless rock, so BYOB (bring your own barbecue).

6. Inferno World


Don’t take too long to prep your vegetables for the grill! The hottest planet on record will flash-incinerate your veggies in seconds!

7. Egg-shaped


Picture this: You are pressure cooking your chicken on a hot gas giant in the shape of an egg. And you’re under pressure to cook fast, because this gas giant is being pulled apart by its nearby star.

8. Two suns


Evenly cook your ribs in a dual convection oven under the dual stars of this “Tatooine.” Kick back and watch your two shadows grow in the fading light of a double sunset.

9. Takeout


Order in for a staycation in our own solar system. The smell of rotten eggs rising from the clouds of sulfuric acid and choking carbon dioxide will put you off cooking, so get that meal to go.

10. Take a Breath


Sometimes the best vacations are the ones you take at home. Flip your burgers on the only planet where you can breathe the atmosphere.

Grill us on Twitter and tell us how bad our jokes are.

Read the full version of this week’s ‘Solar System: 10 Things to Know’ Article HERE.

Make sure to follow us on Tumblr for your regular dose of space:  

A cluster of newborn stars herald their birth …

A cluster of newborn stars herald their birth in this interstellar picture obtained with our Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped (and rose-colored) nebulosity. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus.

A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters.

The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon.

As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons.

The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are sending jets of supersonic gas into the cloud. The impact of these jets heats molecules of carbon monoxide in the cloud, producing the intricate green nebulosity that forms the stem of the rosebud.

Not all stars are formed in clusters. Away from the main nebula and its young cluster are two smaller nebulae, to the left and bottom of the central ‘rosebud,’each containing a stellar nursery with only a few young stars.

Astronomers believe that our own Sun may have formed billions of years ago in a cluster similar to this one. Once the radiation from new cluster stars destroys the surrounding placental material, the stars begin to slowly drift apart.

Additional information about the Spitzer Space Telescope is available at

Make sure to follow us on Tumblr for your regular dose of space: 

Ten Observations From Our Flying Telescope


SOFIA is a Boeing 747SP aircraft with a 100-inch telescope used to study the solar system and beyond by observing infrared light that can’t reach Earth’s surface.


What is infrared light? It’s light we cannot see with our eyes that is just beyond the red portion of visible light we see in a rainbow. It can be used to change your TV channels, which is how remote controls work, and it can tell us how hot things are.


Everything emits infrared radiation, even really cold objects like ice and newly forming stars! We use infrared light to study the life cycle of stars, the area around black holes, and to analyze the chemical fingerprints of complex molecules in space and in the atmospheres of other planets – including Pluto and Mars.


Above, is the highest-resolution image of the ring of dust and clouds around the back hole at the center of our Milky Way Galaxy. The bright Y-shaped feature is believed to be material falling from the ring into the black hole – which is located where the arms of the Y intersect.


The magnetic field in the galaxy M82 (pictured above) aligns with the dramatic flow of material driven by a burst of star formation. This is helping us learn how star formation shapes magnetic fields of an entire galaxy.


A nearby planetary system around the star Epsilon Eridani, the location of the fictional Babylon 5 space station, is similar to our own: it’s the closest known planetary system around a star like our sun and it also has an asteroid belt adjacent to the orbit of its largest, Jupiter-sized planet.


Observations of a supernova that exploded 10,000 years ago, that revealed it contains enough dust to make 7,000 Earth-sized planets!


Measurements of Pluto’s upper atmosphere, made just two weeks before our New Horizons spacecraft’s Pluto flyby. Combining these observations with those from the spacecraft are helping us understand the dwarf planet’s atmosphere.


A gluttonous star that has eaten the equivalent of 18 Jupiters in the last 80 years, which may change the theory of how stars and planets form.


Molecules like those in your burnt breakfast toast may offer clues to the building blocks of life. Scientists hypothesize that the growth of complex organic molecules like these is one of the steps leading to the emergence of life.


This map of carbon molecules in Orion’s Horsehead nebula (overlaid on an image of the nebula from the Palomar Sky Survey) is helping us understand how the earliest generations of stars formed. Our instruments on SOFIA use 14 detectors simultaneously, letting us make this map faster than ever before!


Pinpointing the location of water vapor in a newly forming star with groundbreaking precision. This is expanding our understanding of the distribution of water in the universe and its eventual incorporation into planets. The water vapor data from SOFIA is shown above laid over an image from the Gemini Observatory.


We captured the chemical fingerprints that revealed celestial clouds collapsing to form young stars like our sun. It’s very rare to directly observe this collapse in motion because it happens so quickly. One of the places where the collapse was observed is shown in this image from The Two Micron All Sky Survey.

Learn more by following SOFIA on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space:

Solar System: 10 Things to Know This Week

Week of March 5: Great Shots
Inspiring views of our solar system and beyond



“The first TV image of Mars, hand colored strip-by-strip, from Mariner 4 in 1965. The completed image was framed and presented to JPL director, William H. Pickering. Truly a labor of love for science!” -Kristen Erickson, NASA Science Engagement and Partnerships Director

2-Night Life


“There are so many stories to this image. It is a global image, but relates to an individual in one glance. There are stories on social, economic, population, energy, pollution, human migration, technology meets science, enable global information, etc., that we can all communicate with similar interests under one image.” -Winnie Humberson, NASA Earth Science Outreach Manager

3-Pale Blue Dot


“Whenever I see this picture, I wonder…if another species saw this blue dot what would they say and would they want to discover what goes on there…which is both good and bad. However, it would not make a difference within the eternity of space—we’re so insignificant…in essence just dust in the galactic wind—one day gone forever.”

-Dwayne Brown, NASA Senior Communications Official

4-Grand Central


“I observed the Galactic Center with several X-ray telescopes before Chandra, including the Einstein Observatory and ROSAT. But the Chandra image looks nothing like those earlier images, and it reminded me how complex the universe really is. Also I love the colors.” -Paul Hertz, Director, NASA Astrophysics Division

5-Far Side Photobomb


“This image from the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the Moon as it moved in front of the sunlit side of Earth in 2015. It shows a view of the farside of the Moon, which faces the Sun, that is never directly visible to us here on Earth. I found this perspective profoundly moving and only through our satellite views could this have been shared.” -Michael Freilich, Director NASA Earth Science Division

6-”Shocking, Exciting and Wonderful”


“Pluto was so unlike anything I could imagine based on my knowledge of the Solar System. It showed me how much about the outer solar system we didn’t know. Truly shocking, exciting and wonderful all at the same time.” -Jim Green, Director, NASA Planetary Science Division

7-Slices of the Sun


“This is an awesome image of the Sun through the Solar Dynamic Observatory’s many filters. It is one of my favorites.” – Peg Luce, Director, NASA Heliophysics Division (Acting)

8-Pluto’s Cold, Cold Heart


“This high-resolution, false color image of Pluto is my favorite. The New Horizons flyby of Pluto on July 14, 2015 capped humanity’s initial reconnaissance of every major body in the solar system. To think that all of this happened within our lifetime! It’s a reminder of how privileged we are to be alive and working at NASA during this historic era of space exploration.” – Laurie Cantillo, NASA Planetary Science Public Affairs Officer

9-Family Portrait


“The Solar System family portrait, because it is a symbol what NASA exploration is really about: Seeing our world in a new and bigger way.” – Thomas H. Zurbuchen, Associate Administrator, NASA Science Mission Directorate

10-Share Your Favorite Space Shots


Tag @NASASolarSystem on your favorite social media platform with a link to your favorite image and few words about why it makes your heart thump.

Check out the full version of this article HERE.

Make sure to follow us on Tumblr for your regular dose of space: