Category: exploration

All About That (Nucleic) Base

Studying DNA Aboard the International Space Station

What do astronauts, microbes and plants all have in common? Each relies on DNA – essentially a computer code for living things – to grow and thrive. The microscopic size of DNA, however, can create some big challenges for studying it aboard the International Space Station.

image

The real question about DNA in space:
but why, tho?

Studying DNA in space could lead to a better understanding of
microgravity’s impact on living organisms and could also offer ways to identify
unknown microbes in spacecraft, humans and the deep space locations we hope to
visit one day.

image

Most Earth-based
molecular research equipment is large and requires significant amounts of power
to run. Those are two characteristics that can be difficult to support aboard
the station, so previous research samples requiring DNA amplification and sequencing had to be stored in space until they
could be sent back to Earth aboard a cargo spacecraft, adding to the time
required to get results.

Fun science pro tip:
amplification means to make lots and lots of copies of a specific section of
DNA.

image

However, all of
that has changed in a few short years as we’ve worked to find new solutions
for rapid in-flight molecular testing aboard the space station.

“We need[ed] to
get machines to be compact, portable, robust, and independent of much power
generation to allow for more agile testing in space,” NASA astronaut and molecular biologist Kate
Rubins said in a 2016 downlink with the National Institutes of Health.

The result? An advanced
suite of tabletop and palm-sized tools including MinION, miniPCR, and Wet-Lab-2, and more tools and processes on the
horizon.

The timeline:

Space-based DNA
testing took off in 2016 with the Biomolecule Sequencer.

image

Comprised of
the MinION sequencer and a Surface Pro 3 tablet for analysis, the
tool was used to sequence DNA in space for the first time with Rubins at the helm.

In 2017, that tool was used again for Genes in Space-3, as NASA astronaut Peggy Whitson
collected and tested samples of microbial growth from around the station.

image

Alongside MinION,
astronauts also tested miniPCR, a thermal cycler used to perform the polymerase
chain reaction that had been downsized to fit workbenches aboard the space
station. Together these platforms provided the identification of unknown
station microbes for the first time EVER from space.

This year, those testing capabilities translated
into an even stronger portfolio of DNA-focused research for the orbiting
laboratory’s fast-paced science schedule. For example, miniPCR is being used to
test weakened immune systems and DNA alterations as part of a student-designed
investigation known as Genes in Space-5.

image

The study hopes
to reveal more about astronaut health and potential stress-related changes to
DNA created by spaceflight. Additionally, WetLab-2 facility is a suite of tools aboard the station
designed to process biological samples for real-time gene expression analysis.

image

More tools for filling out the complete
molecular studies opportunities on the orbiting laboratory are heading to space
soon.

“The mini
revolution has begun,” said Sarah Wallace, our principal investigator for
the upcoming Biomolecule Extraction and Sequencing Technology (BEST) investigation. “These are very small, efficient tools. We
have a nicely equipped molecular lab on station and devices ideally sized for
spaceflight.”

image

BEST is
scheduled to launch to the station later this spring and will compare
swab-to-sequencer testing of unknown microbes aboard the space station against current
culture-based methods.

Fast, reliable
sequencing and identification processes could keep explorers safer on missions
into deep space. On Earth, these technologies may make genetic research more
accessible, affordable and mobile.

To learn more
about the science happening aboard the space station, follow @ISS_Research for daily updates. For opportunities to
see the space station pass over your town, check out Spot
the Station
.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Solar System: 10 Things to Know This Week

2—Four Hundred Elephants…The Saturn V rocket stood about the height of a 36-story-tall building, and 60 feet (18 meters) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds (2.8 million kilograms), or the weight of about 400 elephants.Rockets We Love-Saturn V

Fifty years ago, with President Kennedy’s Moon landing deadline looming, the powerful Saturn V had to perform. And perform it did—hurling 24 humans to the Moon.

image

The race to land astronauts on the Moon was getting tense 50 years ago this week. Apollo 6, the final uncrewed test flight of America’s powerful Moon rocket, launched on April 4, 1968. Several technical issues made for a less-than-perfect launch, but the test flight nonetheless convinced NASA managers that the rocket was up to the task of carrying humans. Less than two years remained to achieve President John F. Kennedy’s goal to put humans on the Moon before the decade was out, meaning the Saturn V rocket had to perform.

1—“The only chance to get to the Moon before the end of 1969.”

image

After the April 1968 Apollo 6 test flight (pictured above), the words of Deke Slayton (one of the original Mercury 7 astronauts) and intense competition with a rival team in the Soviet Union propelled a 12-member panel to unanimously vote for a Christmas 1968 crewed mission to orbit the Moon.

2—Four Hundred Elephants…

image

The Saturn V rocket stood about the height of a 36-story-tall building, and 60 feet (18 meters) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds (2.8 million kilograms), or the weight of about 400 elephants.

3—…and Busloads of Thrust

image

Stand back, Ms. Frizzle. The Saturn V generated 7.6 million pounds (34.5 million newtons) of thrust at launch, creating more power than 85 Hoover Dams. It could launch about 130 tons (118,000 kilograms) into Earth orbit. That’s about as much weight as 10 school buses. The Saturn V could launch about 50 tons (43,500 kilograms) to the Moon. That’s about the same as four school buses.

4—Christmas at the Moon

image

On Christmas Eve 1968, the Saturn V delivered on engineers’ promises by hurling Frank Borman, Jim Lovell and Bill Anders into lunar orbit. The trio became the first human beings to orbit another world. The Apollo 8 crew broadcast a special holiday greeting from lunar orbit and also snapped the iconic earthrise image of our home planet rising over the lunar landscape.

5—Gumdrop and Spider

image

The crew of Apollo 9 proved that they could pull the lunar module out of the top of the Saturn V’s third stage and maneuver it in space (in this case high above Earth). The crew named their command module “Gumdrop.” The Lunar Module was named “Spider.”

6—The Whole Enchilada

image

Saturn-V AS-505 provided the ride for the second dry run to the Moon in 1969. Tom Stafford, Gene Cernan and John Young rode Command Module “Charlie Brown” to lunar orbit and then took Lunar Module “Snoopy” on a test run in lunar orbit. Apollo 10 did everything but land on the Moon, setting the stage for the main event a few months later. Young and Cernan returned to walk on the Moon aboard Apollo 16 and 17 respectively. Cernan, who died in 2017, was the last human being (so far) to set foot on the Moon.

7—The Main Event

image

The launch of Apollo 11—the first mission to land humans on the Moon—provided another iconic visual as Saturn-V AS-506 roared to life on Launch Pad 39A at Kennedy Space Center in Florida. Three days later, Neil Armstrong and Buzz Aldrin made the first of many bootprints in the lunar dust (supported from orbit by Michael Collins).

8—Moon Men

image

Saturn V rockets carried 24 humans to the Moon, and 12 of them walked on its surface between 1969 and 1972. Thirteen are still alive today. The youngest, all in their early 80s, are moonwalkers Charles Duke (Apollo 16) and Harrison Schmitt (Apollo 17) and Command Module Pilot Ken Mattingly (Apollo 16, and also one of the heroes who helped rescue Apollo 13). There is no single image of all the humans who have visited the Moon.

9—The Flexible Saturn V

The Saturn V’s swan song was to lay the groundwork for establishing a permanent human presence in space. Skylab, launched into Earth orbit in 1973, was America’s first space station, a precursor to the current International Space Station. Skylab’s ride to orbit was a Saturn IV-B 3rd stage, launched by a Saturn 1-C and SII Saturn V stages.

This was the last launch of a Saturn V, but you can still see the three remaining giant rockets at the visitor centers at Johnson Space Center in Texas and Kennedy Space Center in Florida and at the United States Space and Rocket Center in Alabama (near Marshall Space Flight Center, one of the birthplaces of the Saturn V).

10—The Next Generation

The Saturn V was retired in 1973. Work is now underway on a fleet of rockets. We are planning an uncrewed flight test of Space Launch System (SLS) rocket to travel beyond the Moon called Exploration Mission-1 (EM-1). “This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington.

Read the web version of this 10 Things to Know article HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Exploration is a tradition at NASA. As we work…

Exploration is a tradition at NASA. As we work to reach for new heights and reveal the unknown for the benefit of humankind, our acting Administrator shared plans for the future during the #StateOfNASA address today, February 12, 2018 which highlights the Fiscal Year 2019 Budget proposal.

Acting Administrator Lightfoot says “This budget focuses NASA on its core exploration mission and reinforces the many ways that we return value to the U.S. through knowledge and discoveries, strengthening our economy and security, deepening partnerships with other nations, providing solutions to tough problems, and inspiring the next generation. It places NASA and the U.S. once again at the forefront of leading a global effort to advance humanity’s future in space, and draws on our nation’s great industrial base and capacity for innovation and exploration.”

Read the full statement: https://www.nasa.gov/press-release/nasa-acting-administrator-statement-on-fiscal-year-2019-budget-proposal

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10 Things to Know About Explorer 1, America’s …

Sixty years ago, the hopes of Cold War America soared into the night sky as a rocket lofted skyward above Cape Canaveral, a soon-to-be-famous barrier island off the Florida coast.

1. The Original Science Robot

image

Sixty years ago this week, the United States sent its first satellite into space on Jan. 31, 1958. The spacecraft, small enough to be held triumphantly overhead, orbited Earth from as far as 1,594 miles (2,565 km) above and made the first scientific discovery in space. It was called, appropriately, Explorer 1.

2. Why It’s Important

image

The world had changed three months before Explorer 1’s launch, when the Soviet Union lofted Sputnik into orbit on Oct. 4, 1957. That satellite was followed a month later by a second Sputnik spacecraft. All of the missions were inspired when an international council of scientists called for satellites to be placed in Earth orbit in the pursuit of science. The Space Age was on.

3. It…Wasn’t Easy

image

When Explorer 1 launched, we (NASA) didn’t yet exist. It was a project of the U.S. Army and was built by Caltech’s Jet Propulsion Laboratory (JPL) in Pasadena, California. After the Sputnik launch, the Army, Navy and Air Force were tasked by President Eisenhower with getting a satellite into orbit within 90 days. The Navy’s Vanguard Rocket, the first choice, exploded on the launch pad Dec. 6, 1957.

4. The People Behind Explorer 1

image

University of Iowa physicist James Van Allen, whose proposal was chosen for the Vanguard satellite, had made sure his scientific instrument—a cosmic ray detector—would fit either launch vehicle. Wernher von Braun, working with the Army Ballistic Missile Agency in Alabama, directed the design of the Redstone Jupiter-C launch rocket, while JPL Director William Pickering oversaw the design of Explorer 1 and other upper stages of the rocket. JPL was also responsible for sending and receiving communications from the spacecraft.

5. All About the Science

image

Explorer 1’s science payload took up 37.25 inches (95 cm) of the satellite’s total 80.75 inches (2.05 meters). The main instruments were a cosmic-ray detector; internal, external and nose-cone temperature sensors; a micrometeorite impact microphone; a ring of micrometeorite erosion gauges; and two transmitters. There were two antennas in the body of the satellite and its four flexible whips formed a turnstile antenna that extended with the rotation of the satellite. Electrical power was provided by batteries that made up 40 percent of the total payload weight.

6. At the Center of a Space Doughnut

image

The first scientific discovery in space came from Explorer 1. Earth is surrounded by radiation belts of electrons and charged particles, some of them moving at nearly the speed of light, about 186,000 miles (299,000 km) per second. The two belts are shaped like giant doughnuts with Earth at the center. Data from Explorer 1 and Explorer 3 (launched March 26, 1958) led to the discovery of the inner radiation belt, while Pioneer 3 (Dec. 6, 1958) and Explorer IV (July 26, 1958) provided additional data, leading to the discovery of the outer radiation belt. The radiation belts can be hazardous for spacecraft, but they also protect the planet from harmful particles and energy from the Sun.

7. 58,376 Orbits

image

Explorer 1’s last transmission was received May 21, 1958. The spacecraft re-entered Earth’s atmosphere and burned up on March 31, 1970, after 58,376 orbits. From 1958 on, more than 100 spacecraft would fall under the Explorer designation.

8. Find Out More!

image

Want to know more about Explorer 1? Check out the website and download the poster celebrating 60 years of space science. go.nasa.gov/Explorer1

9. Hold the Spacecraft In Your Hands

image

Create your own iconic Explorer 1 photo (or re-create the original), with our Spacecraft 3D app. Follow @NASAEarth this week to see how we #ExploreAsOne. https://go.nasa.gov/2BmSCWi

10. What’s Next?

image

All of our missions can trace a lineage to Explorer 1. This year alone, we’re going to expand the study of our home planet from space with the launch of two new satellite missions (GRACE-FO and ICESat-2); we’re going back to Mars with InSight; and the Transiting Exoplanet Survey Satellite (TESS) will search for planets outside our solar system by monitoring 200,000 bright, nearby stars. Meanwhile, the Parker Solar Probe will build on the work of James Van Allen when it flies closer to the Sun than any mission before.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

#NASARemembers

Each year we hold a Day of Remembrance. Today, Jan. 25, we pay will tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA colleagues who lost their lives while furthering the cause of exploration and discovery. 

#NASARemembers

Learn more about the Day of Remembrance HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Finalists for a Future Mission to Explore the …

We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.

What are they?

In no particular order…

CAESAR

image

CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.

image

This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth. 

image

Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth’s oceans, and of life.

Dragonfly

A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.

image

Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.

image

Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan’s organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.

What’s Next?

The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.

image

That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu. 

Key Technologies

We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.

image

The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.

image

The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.

The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

SpaceX Dragon breathes Astronomical Amounts of…

SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida. 

image

This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more. 

image

Here are some highlights of research that will be delivered to the station:

ZBLAN Fiber Optics Tested in Space!

The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.

image

When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire. 

Total and Spectral Solar Irradiance Sensor is Totally Teaching us About Earth’s Climate

The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.

image

Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.  

Sensor Monitors Space Station Environment for Space Junk

The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.

image

Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola. 

Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.

Self-Assembling and Self-Replicating Materials in Space!

Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions. 

image

The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium. 

Melting Plastics in Microgravity

The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.

image

These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.  

Studying Slime (or…Algae, at Least) on the Space Station

Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.

image

The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important. 

Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!

For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.

Researchers Just Found (For The First Time) An…

image

Our Milky Way galaxy is full of hundreds of billions of
worlds just waiting to be found. In 2014, scientists using data from our planet-hunting
Kepler space telescope discovered seven planets orbiting Kepler-90, a Sun-like star
located 2,500 light-years away. Now, an eighth planet has been identified in this
planetary system, making it tied with our own solar system in having the highest
number of known planets. Here’s what you need to know:

The new planet is called Kepler-90i.

image

Kepler-90i is a sizzling hot, rocky planet. It’s the smallest of eight planets in the Kepler-90 system. It orbits so close to its star that a “year” passes in just 14 days.

image

Average surface temperatures on Kepler-90i are estimated to hover around 800 degrees Fahrenheit, making it an unlikely place for life as we know it.

Its planetary system is like a scrunched up version of our solar system.

image

The Kepler-90 system is set up like our solar system, with the small planets located close to their star and the big planets farther away. This pattern is evidence that the system’s outer gas planets—which are about the size of Saturn and Jupiter—formed in a way similar to our own.

image

But the orbits are much more compact. The orbits of all eight
planets could fit within the distance of Earth’s orbit around our Sun! Sounds
crowded, but think of it this way: It would make for some great planet-hopping.

Kepler-90i was discovered using machine learning.

image

Most planets beyond our solar system are too far away to be imaged directly. The Kepler space telescope searches for these exoplanets—those planets orbiting stars beyond our solar system—by measuring how the brightness of a star changes when a planet transits, or crosses in front of its disk. Generally speaking, for a given star, the greater the dip in brightness, the bigger the planet!

image

Researchers trained a computer to learn how to identify the faint signal of transiting exoplanets in Kepler’s vast archive of deep-space data. A search for new worlds around 670 known multiple-planet systems using this machine-learning technique yielded not one, but two discoveries: Kepler-90i and Kepler-80g. The latter is part of a six-planet star system located 1,000 light-years away.

This
is just the beginning of a new way of planet hunting.

image

Kepler-90 is the first known star system besides our own that has eight planets, but scientists say it won’t be the last. Other planets may lurk around stars surveyed by Kepler. Next, researchers are using machine learning with sophisticated computer algorithms to search for more planets around 150,000 stars in the Kepler database.

In
the meantime, we’ll be doing more searching with telescopes.

image

Kepler is the most successful planet-hunting spacecraft to date, with more than 2,500 confirmed exoplanets and many more awaiting verification. Future space missions, like the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope and Wide-Field Infrared Survey Telescope (WFIRST) will continue the search for new worlds and even tell us which ones might offer promising homes for extraterrestrial life.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

*All images of exoplanets
are artist illustrations.

What in the Universe is an Exoplanet?

Simply put, an exoplanet is a planet that orbits another star. 

All of the planets in our solar system orbit around the Sun. Planets that orbit around other stars outside our solar system are called exoplanets.

Just because a planet orbits a star (like Earth) does not mean that it is automatically stable for life. The planet must be within the habitable zone, which is the area around a star in which water has the potential to be liquid…aka not so close that all the water would evaporate, and not too far away where all the water would freeze.

Exoplanets are very hard to see directly with telescopes. They are hidden by the bright glare of the stars they orbit. So, astronomers use other ways to detect and study these distant planets by looking at the effects these planets have on the stars they orbit.

One way to search for exoplanets is to look for “wobbly” stars. A star that has planets doesn’t orbit perfectly around its center. From far away, this off-center orbit makes the star look like it’s wobbling. Hundreds of planets have been discovered using this method. However, only big planets—like Jupiter, or even larger—can be seen this way. Smaller Earth-like planets are much harder to find because they create only small wobbles that are hard to detect.

How can we find Earth-like planets in other solar systems?

In 2009, we launched a spacecraft called Kepler to look for exoplanets. Kepler looked for planets in a wide range of sizes and orbits. And these planets orbited around stars that varied in size and temperature.

Kepler detected exoplanets using something called the transit method. When a planet passes in front of its star, it’s called a transit. As the planet transits in front of the star, it blocks out a little bit of the star’s light. That means a star will look a little less bright when the planet passes in front of it. Astronomers can observe how the brightness of the star changes during a transit. This can help them figure out the size of the planet.

By studying the time between transits, astronomers can also find out how far away the planet is from its star. This tells us something about the planet’s temperature. If a planet is just the right temperature, it could contain liquid water—an important ingredient for life.

So far, thousands of planets have been discovered by the Kepler mission.

We now know that exoplanets are very common in the universe. And future missions have been planned to discover many more!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Human Expansion Across Solar System

On this day in 1972, two NASA astronauts landed on the Moon. Now, 45 years later, we have been instructed to return to the lunar surface.

Today at the White House, President Trump signed the Space Policy Directive 1, a change in national space policy that provides for a U.S.-led program with private sector partners for a human return to the Moon, followed by missions to Mars and beyond.

Among other dignitaries on hand for the signing, were NASA astronauts Sen. Harrison “Jack” Schmitt, Buzz Aldrin, Peggy Whitson and Christina Koch.

Schmitt landed on the moon 45 years to the minute that the policy directive was signed as part of our Apollo 17 mission, and is the most recent living person to have set foot on our lunar neighbor. 

Above, at the signing ceremony instructing us to send humans back to the lunar surface, Schmitt shows First Daughter Ivanka Trump the Moon sample he collected in 1972.

The effort signed today will more effectively organize government, private industry and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.

To learn more, visit: https://www.nasa.gov/press-release/new-space-policy-directive-calls-for-human-expansion-across-solar-system

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.