Category: earth science

Five Technologies Taking Aeronautics into the …

Martian helicopters? Electric planes? Quiet supersonic
flight?

The flight technologies of tomorrow are today’s reality at
NASA. We’re developing a number of innovations that promise to change the
landscape (skyscape?) of aviation. Here are five incredible aeronautic
technologies currently in development:

image

 1.
The X-59 QueSST and Quiet Supersonic Technology


It might sound like an oxymoron, but ‘quiet boom’ technology
is all the rage with our Aeronautics Mission Directorate. The X-59 QueSST is
an experimental supersonic jet that hopes to reduce the sound of a supersonic
boom to a gentle thump. We will gauge public reaction to this ‘sonic thump,’
evaluating its potential impact if brought into wider use. Ultimately, if the
commercial sector incorporates this technology, the return of supersonic
passenger flight may become a reality!

image

 2.
The X-57 Electric Place

Electric cars? Pfft. We’re working on an electric PLANE.
Modified from an existing general aviation aircraft, the X-57 will be an all-electric
X-plane, demonstrating a leap-forward in green aviation. The plane seeks to
reach a goal of zero carbon emissions in flight, running on batteries fed by
renewable energy sources!

3. Second-Generation Search and
Rescue Beacons

Our Search and Rescue office develops technologies for
distress beacons and the space systems that locate them. Their new
constellation of medium-Earth orbit instruments can detect a distress call
near-instantaneously, and their second-generation beacons, hitting shelves
soon, are an order of magnitude more accurate than the previous generation!

(The Search and Rescue office also recently debuted a coloring book
that doesn’t save lives but will keep your crayon game strong.)

4. Earth from the Air

Earth science? We got it.

We don’t just use satellite technology to monitor our
changing planet. We have a number of missions that monitor Earth’s systems from
land, sea and air. In the sky, we use flying laboratories to assess things like
air pollution, greenhouse gasses, smoke from wildfires and so much more. Our
planet may be changing, but we have you covered.

image

5. Icing
Research

No. Not that icing.

image

Much better.

Though we at NASA are big fans of cake frosting, that’s not
the icing we’re researching. Ice that forms on a plane mid-flight can disrupt
the airflow around the plane and inside the engine, increasing drag, reducing
lift and even causing loss of power. Ice can also harm a number of other things
important to a safe flight. We’re developing tools and methods for evaluating
and simulating the growth of ice on aircraft. This will help aid in designing
future aircraft that are more resilient to icing, making aviation safer.

There you have it, five technologies taking aeronautics into
the future, safely down to the ground and even to other planets! To stay up to
date on the latest and greatest in science and technology, check out our
website: www.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Blooms in the Baltic

Blooms in the Baltic

Every summer, phytoplankton – microscopic plant-like organisms – spread across the North Atlantic, with blooms spanning hundreds and sometimes thousands of miles. Nutrient-rich, cooler waters tend to promote more growth among marine plants and phytoplankton than is found in tropical waters. Blooms this summer off Scandinavia seem to be particularly intense.

On July 18, 2018, the Operational Land Imager (OLI) on Landsat 8 acquired a natural-color image of a swirling green phytoplankton bloom in the Gulf of Finland, a section of the Baltic Sea. Note how the phytoplankton trace the edges of a vortex; it is possible that this ocean eddy is pumping up nutrients from the depths.

Though it is impossible to know the phytoplankton type without sampling the water, three decades of satellite observations suggest that these green blooms are likely to be cyanobacteria (blue-green algae), an ancient type of marine bacteria that capture and store solar energy through photosynthesis (like plants).

In recent years, the proliferation of algae blooms in the Baltic Sea has led to the regular appearance of “dead zones” in the basin. Phytoplankton and cyanobacteria consume the abundant nutrients in the Baltic ¬and deplete the oxygen. According to researchers from Finland’s University of Turku, the dead zone this year is estimated to span about 70,000 square kilometers (27,000 square miles).

Read more: https://go.nasa.gov/2uLK4aZ

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

We See Seashores Shifting with Satellites

If you’re like us, as soon as the summer Sun is out, you start feeling – well, just beachy, sand you very much. 

Lots of our favorite beaches are inside protected marine areas, which are regulated by governments to keep their ecosystems or cultural heritage intact. If you beachcomb at Cape Cod, swim in the Florida Keys or learn about Hawaiian culture at Papahānaumokuākea Marine National Monument, congrats! You’ve visited a protected marine area.

image

But time and tide haven’t been kind to some protected beaches.

Beaches are constantly changing, and science teams are using our 30-year record of Earth images from the NASA/USGS Landsat program to study what’s happening.

Overall, the sum total of sandy beaches has increased a bit over the last 30 years. But time and tide haven’t been as kind to our protected beaches – the team found that more than 1/3 of sandy beaches in protected marine areas have been eroding away.

image

Some of these areas were designated to protect vulnerable plant and animal species or connect delicate ecosystems. They are home to humpback whales and sea turtles, reefs and mangroves that protect the land from erosion and natural disasters, and species which are found in only one habitat in the world. Losing land area could upset the balance of these areas and endanger their future.

image

Next step: Looking for pearls of wisdom to save the beaches!

Right now, we aren’t sure which beaches are eroding due to natural processes, and which are due to humans – that’s the next step for science teams to investigate. Once we know the causes, we can start working on solutions to save the beaches.

Those 30 years of Landsat data will help scientists find answers to these questions much faster – instead of using airplanes or measuring the beaches by hand, they can use computer programs to rapidly investigate millions of satellite photos spanning many years of change.

image

By tracking beaches from space, scientists can help keep our summers sandy for years to come.

And that makes us as happy as clams.

Read the full story HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Cracking Earth’s Carbon Puzzle

It’s a scientific conundrum with huge implications for our future: How will our planet react to increasing levels of carbon dioxide in the atmosphere?

image

Carbon – an essential building block for life – does not stay in one place or take only one form. Carbon, both from natural and human-caused sources, moves within and among the atmosphere, ocean and land. 

image

We’ve been a trailblazer in using space-based and airborne sensors to observe and quantify carbon in the atmosphere and throughout the land and ocean, working with many U.S. and international partners.

image

Our Orbiting Carbon Observatory-2 (OCO-2) is making unprecedented, accurate global measurements of carbon dioxide levels in the atmosphere and providing unique information on associated natural processes.

image

ABoVE, our multi-year field campaign in Alaska and Canada is investigating how changes in Arctic ecosystems such as boreal forests in a warming climate result in changes to the balance of carbon moving between the atmosphere and land.

image

This August we’re embarking on an ocean expedition with the National Science Foundation to the northeast Pacific called EXPORTS that will help scientists develop the capability to better predict how carbon in the ocean moves, which could change as Earth’s climate changes. 

image

ECOSTRESS is slated to launch this summer to the International Space Station to make the first-ever measurements of plant water use and vegetation stress on land – providing key insights into how plants link Earth’s global carbon cycle with its water cycle.

image

Later this year, ECOSTRESS will be joined on the space station by GEDI, which will use a space borne laser to help estimate how much carbon is locked in forests and how that quantity changes over time.

image

In early 2019, the OCO-3 instrument is scheduled to launch to the space station to complement OCO-2 observations and allow scientists to probe the daily cycle of carbon dioxide exchange processes over much of the Earth.

image

And still in the early stages of development is the Geostationary Carbon Cycle Observatory (GeoCarb) satellite, planned to launch in the early 2020s. GeoCarb will collect 10 million observations a day of carbon dioxide, methane and carbon monoxide.

image

Our emphasis on carbon cycle science and the development of new carbon-monitoring tools is expected to remain a top priority for years to come. READ MORE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.