Category: astronauts

Hostile and Closed Environments, Hazards at Cl…

A
human journey to Mars, at first
glance, offers an inexhaustible amount of complexities. To bring a mission to
the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards
astronauts will encounter on a continual basis into five classifications.

A spacecraft is not only a home,
it’s also a machine. NASA understands that the ecosystem inside a vehicle plays
a big role in everyday astronaut life.

Important habitability factors
include temperature, pressure, lighting, noise, and quantity of space. It’s
essential that astronauts are getting the requisite food, sleep and exercise
needed to stay healthy and happy. The space environment introduces challenges
not faced on Earth.

Technology, as often is the case
with out-of-this-world exploration, comes to the rescue! Technology plays a big
role in creating a habitable home in a harsh environment and monitoring some of
the environmental conditions.

Astronauts are also asked to
provide feedback about their living environment, including physical impressions
and sensations so that the evolution of spacecraft can continue addressing the
needs of humans in space.

Exploration to the Moon and Mars will expose astronauts to five
known hazards of spaceflight, including hostile and closed environments, like
the closed environment of the vehicle itself. To learn more, and find out what
NASA’s Human Research Program is doing to protect humans in
space, check out the “Hazards of Human Spaceflight" website.
Or, check out this week’s episode of “Houston
We Have a Podcast,” in which host Gary Jordan
further dives into the threat of hostile and closed environments with Brian
Crucian, NASA immunologist at the Johnson Space Center.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Gravity, Hazard of Alteration

A
human journey to Mars, at first
glance, offers an inexhaustible amount of complexities. To bring a mission to
the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards
astronauts will encounter on a continual basis into five classifications.

image

The variance of gravity fields that
astronauts will encounter on a mission to Mars is the fourth hazard.

image

On Mars, astronauts would need to
live and work in three-eighths of Earth’s gravitational pull for up to two
years. Additionally, on the six-month trek between the planets, explorers will
experience total weightlessness. 

image

Besides Mars and deep space there
is a third gravity field that must be considered. When astronauts finally
return home they will need to readapt many of the systems in their bodies to
Earth’s gravity.

image

To further complicate the problem,
when astronauts transition from one gravity field to another, it’s usually
quite an intense experience. Blasting off from the surface of a planet or a
hurdling descent through an atmosphere is many times the force of gravity.

image

Research is being conducted to
ensure that astronauts stay healthy before, during and after their mission.
Specifically researchers study astronauts’
vision, fine motor skills, fluid distribution, exercise protocols and response to
pharmaceuticals.

image

Exploration to the Moon and Mars will expose astronauts to five
known hazards of spaceflight, including gravity. To learn more, and find out
what NASA’s Human Research Program is doing to protect humans in
space, check out the “Hazards of Human Spaceflight" website.
Or, check out this week’s episode of “Houston
We Have a Podcast
,” in which host Gary Jordan
further dives into the threat of gravity with Peter
Norsk,
Senior Research Director/ Element Scientist at
the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Regular

There’s one in every bunch.

Distance: Hazard Far From Home

A human journey to Mars, at first glance, offers an inexhaustible amount
of complexities. To bring a mission to the Red Planet from fiction to fact, our Human
Research Program
has
organized some of the hazards astronauts will encounter on a continual basis
into five classifications.

image

The third and perhaps most apparent hazard is, quite
simply, the distance.

image
image

Rather than a three-day lunar trip, astronauts would
be leaving our planet for roughly three years. Facing a communication delay of
up to 20 minutes one way and the possibility of equipment failures or a medical
emergency, astronauts must be capable of confronting an array of situations
without support from their fellow team on Earth.

image

Once you burn your engines for Mars, there is no
turning back so planning and self-sufficiency are essential keys to a
successful Martian mission. The Human Research Program is studying and
improving food formulation, processing, packaging and preservation systems.

image
image

While International Space Station expeditions serve as
a rough foundation for the expected impact on planning logistics for such a
trip, the data isn’t always comparable, but it is a key to the solution.

image

Exploration to the Moon and Mars
will expose astronauts to five known hazards of spaceflight, including distance
from Earth. To learn more, and find out what our Human Research
Program is doing to protect humans in space, check out the “Hazards
of Human Spaceflight
" website. Or,
check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan
further dives into the threat of distance with Erik Antonsen, the
Assistant Director for Human Systems Risk
Management at the Johnson Space Center.

image


Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

Get to Know the 9 Astronauts Set to #LaunchAme…

Our Commercial Crew Program is
working with the American aerospace industry to develop and operate a
new generation of spacecraft to carry astronauts

to and from low-Earth orbit!

As we prepare to launch humans from American soil for the first time since the final space shuttle mission in 2011, get to know the astronauts who will fly with Boeing and SpaceX

as members of our commercial crew!

Bob
Behnken

image

Bob Behnken

served as Chief of the NASA Astronaut Office from July 2012 to July
2015, where he was responsible for flight assignments, mission preparation, on-orbit
support of International Space Station crews and organization of astronaut
office support for future launch vehicles. Learn more about Bob

Eric Boe

image

Eric
Boe first dreamed of being an astronaut at age 5 after his parents woke him up to
watch Neil Armstrong take his first steps onto the lunar surface. Learn more
about Eric
.

 Josh
Cassada 

image

Josh Cassada  holds a Master of Arts Degree and a Doctorate in Physics with a
specialty in high energy particle physics from the University of Rochester, in
Rochester, New York. He was selected as a NASA astronaut in 2013, and his first
spaceflight will be as part of the Commercial Crew Program. Learn more about
Josh
.

Chris Ferguson

image

Chris
Ferguson served as a Navy pilot before becoming a NASA astronaut, and was
commander aboard Atlantis for the final space shuttle flight, as part of the
same crew as Doug Hurley. He retired from NASA in 2011 and has been an integral
part of Boeing’s CST-100 Starliner program. Learn more about Chris

Victor
Glover

image

Victor Glover was selected as a NASA astronaut in 2013 while working as a Legislative Fellow in the United States Senate. His first spaceflight will be as part of the Commercial Crew Program. Learn more about Victor. 

Mike
Hopkins

image

Mike Hopkins

was a top flight test engineer at the United States Air Force Test
Pilot School. He also studied political science at the Università degli Studi
di Parma in Parma, Italy, in 2005, and became a NASA astronaut in 2009. Learn
more about Mike
.

Doug Hurley

image

In
2009, Doug Hurley was one of the record-breaking 13 people living on the space
station at the same time. In 2011, he served as the pilot on Atlantis during the
final space shuttle mission, delivering supplies and spare parts to the
International Space Station. Now, he will be one of the first people to launch
from the U.S. since that last shuttle mission. Learn more about Doug.

Nicole Mann

image

Nicole
Mann is a Naval Aviator and a test pilot in the F/A-18 Hornet. She was selected
as a NASA astronaut in 2013, and her first spaceflight will be as part of the Commercial
Crew Program. Learn more about Nicole.

Suni
Williams 

image

Suni Williams

has completed 7 spacewalks, totaling 50 hours and 40 minutes. She’s
also known for running. In April 2007, Suni ran the first marathon in space,
the Boston Marathon, in 4 hours and 24 minutes. Learn more about Suni.

Boeing and SpaceX are scheduled to complete their crew flight tests in mid-2019 and April 2019, respectively. Once enabled, commercial transportation to and from the
International Space Station will empower more station use, more research time and more
opportunities to understand and overcome the challenges of living in space, which is critical for us to create a sustainable
presence on the Moon and carry out missions deeper into the solar system, including Mars! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Welcome Home HERA Mission XVII!

With the Human Exploration Research Analog (HERA) habitat, we
complete studies to prepare us for exploration to asteroids, Mars, and the Moon…
here on Earth! The studies are called analogs, and
they simulate space missions to study how different aspects of deep space
affect humans. During a HERA mission, the crew (i.e., the research participants)
live and work very much as astronauts do, with minimal contact with anyone
other than Mission Control for 45 days.

The most recent study, Mission XVII, just “returned
to Earth” on June 18
. (i.e., the participants egressed, or exited the
habitat at our Johnson Space Center in Houston after their 45-day study.) We
talked with the crew, Ellie, Will, Chi, and Michael, about the experience. Here
are some highlights!

Why did you decide to participate in
HERA Mission XVII?

image

HERA
Mission VXII participants (from left to right) Ellie, Will, Chi, and Michael.

“My master’s is in human factors,” said Chi, who studies the
interaction between humans and other systems at Embry-Riddle Aeronautical
University. “I figured this would be a cool way to study the other side of the
table and actually participate in an analog.” For Michael, who holds a PhD in
aerospace engineering and researches immunology and radio biology, it was an
opportunity to experience life as an astronaut doing science in space. “I’ve
flown [experiments] on the space station and shuttle,” he said. “Now I wanted
to see the other side.” For Will, a geosciences PhD, it provided an opportunity
to contribute to space exploration and neuroscience, which he considers two of
the biggest fields with the most potential in science. “Here, we have this
project that is the perfect intersection of those two things,” he said. And
Ellie, a pilot in the Air Force, learned about HERA while working on her
master’s thesis on Earth and space analogs and how to improve them for deep-space
studies. “A lot of my interests are similar to Chi’s,” she said. “Human factors
and physiological aspects are things that I find very fascinating.”

NASA missions all have patches, and
HERA Mission XVII is no different. Did you get to design your patch?

HERA
Mission VXII patch, which reads “May the Force be with you” in Latin and features
Star Wars iconography. It’s a reference to the mission’s start date, May 4th
aka Star Wars Day!

“We did!” They said …with a little the help from Michael’s brother, who is a designer. He drew
several different designs based on the crew’s ideas. They picked one and worked
together on tweaks. “We knew we were going [inside the habitat] on May Fourth,”
Michael said. “We knew it would be Star Wars Day. So we did a Star Wars theme.”
The patch had to come together fairly quickly though, since a Star Wars Day “launch”
wasn’t the initial plan. “We were supposed to start two weeks earlier,” Ellie
said. “It just so happened the new start date was May the Fourth!” Along with
the Star Wars imagery, the patch includes a hurricane symbol, to pay tribute to
hurricane Harvey which caused a previous crew to end their mission early, and
an image of the HERA habitat. Will joked that designing the patch
was “our first team task.”

How much free time did you have and
what did you do with it?

image

HERA
Mission XVII crew looking down the ladders inside the habitat.

“It was a decent amount,” Michael said. “I could have used
more on the harder days, but in a way it’s good we didn’t have more because
it’s harder to stay awake when you have nothing to do.” (The mission included a
sleep reduction study, which meant the crew only got five hours of sleep a
night five days a week.) “With the time I did have, I read a lot,” he said. He
also drew, kept a journal, and “wrote bad haikus.” Because of the sleep study, Ellie
didn’t read as much. “For me, had I tried to read or sit and do anything not
interactive, I would have fallen asleep,” she said.

image

The
crew’s art gallery, where they hung drawing and haikus they wrote.

Journaling and drawing were popular ways to pass the time. “We
developed a crew art gallery on one of the walls,” Will said. They also played
board games—in particular a game where you score points by making words with
lettered tiles on a 15×15 grid. (Yes that
one!) “Playing [that game] with two scientists wasn’t always fun though,” Ellie
joked, referencing some of the more obscure vocabulary words Will and Michael
had at the ready. “I was like, ‘What does that word mean?’ ‘Well that word
means lava flow,” she said laughing.
(The rest of the crew assured us she fared just fine.)

Chi tried reading, but found it difficult due to the dimmed
lights that were part of an onboard light study. She took on a side project
instead: 1000 paper cranes. “There is a story in Japan—I’m half Japanese—that
if you make a 1000 cranes, it’s supposed to grant you a wish,” she said. She
gave hers to her grandmother.

image

The
whole crew having dinner together on “Sophisticated Saturdays!” From left to
right: Will, Ellie, Chi, and Michael. They’re wearing their Saturday best,
which includes the usual research equipment.

On weekends, the crew got eight hours of sleep, which they
celebrated with “Sophisticated Saturdays!” “Coming in, we all brought an outfit
that was a little fancy,” Ellie said. (Like a tie, a vest, an athletic
dress—that kind of thing.) “We would only put it on Saturday evenings, and we’d
have dinner on the first level at the one and only table we could all sit at
and face each other,” she said. “We would pretend it was a different fancy
restaurant every week.”

image

The
table set for a “civilized” Saturday dinner. Once the crew’s hydroponics grew,
they were able to add some greenery to the table.

“It was a way to feel more civilized,” Will said, who then
offered another great use of their free time: establishing good habits. “I
would use the free time to journal, for example. I’d just keep it up every day.
That and stretching. Hydrating. Flossing.”

Like real astronauts, you were in
contact with Mission Control and further monitored by HERA personnel. Was it
weird being on camera all the time?

image

HERA
personnel and the monitors they use for a typical HERA mission.

“I was always aware of it,” Michael said, “but I don’t think
it changed my behavior. It’s not like I forgot about it. It was always there. I
just wasn’t willing to live paranoid for 45 days.” Ellie agreed. “It was always
in the back of my mind,” she said, further adding that they wore microphones
and various other sensors. “We were wired all the time,” she said.

After the study, the crew met up with the people
facilitating the experiments, sometimes for the first time. “It was really fun
to meet Mission Control afterwards,” Will said. “They had just been this voice
coming from the little boxes. It was great getting to meet them and put faces
to the voices,” he said. “Of course, they knew us well. Very well.”

For more information on HERA, visit our analogs homepage.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which began May 5, 2018 and ends today, June 18 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

The HERA XVII crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

  • William Daniels
  • Chiemi Heil
  • Eleanor Morgan
  • Michael Pecaut

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation.

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

  • The crew follows a timeline that is similar to one used for the space station crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.
  • Mission: May 5 – June 18, 2018

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE.

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Was your question selected to be sent to the I…

We asked real life astronauts YOUR questions! Was your submission sent to space?

Astronauts Drew Feustel & Ricky Arnold recently recorded answers to your questions in a Video Answer Time session. We collected your questions and sent them to space to be answered by the astronauts on Friday, May 18. We recorded their answers and will post them tomorrow, May 30, here on our Tumblr

Was your question selected to be sent to the International Space Station? Check our Tumblr tomorrow, starting at noon EDT to find out!

About the astronauts:

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

Don’t forget check our Tumblr tomorrow at noon EDT to see if your question was answered by real-life astronauts in space. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Ever want to ask a real life astronaut a quest…

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronauts Drew Feustel & Ricky Arnold will be taking your questions in a Video Answer Time session. We’ll collect your questions and send them to space to be answered by the astronauts on Friday, May 18. We’ll record their answers and post them on Wednesday, May 23 here on NASA’s Tumblr. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

And don’t forget to submit your questions at http://nasa.tumblr.com/ask!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which begins Feb. 1, 2018 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

image

The HERA XVI crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

  • Kent Kalogera
  • Jennifer Yen
  • Erin Hayward
  • Gregory Sachs

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

image

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation. 

image

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

  • The crew follows a timeline that is similar to one used for the space station crew.
  • They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.
  • Mission: February 1, 2018 – March 19, 2018
image

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com